首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
通过引发自由基聚合得到了AMPS和SR单体的共聚物溶液,经过流延干燥成膜得到的PAS膜,其中具有醚氧基团的单体SR作为对质子有溶剂化作用的组分,含有磺酸基团的AMPS作为质子源.对膜的性能进行了初步测试表征.在高温低湿度的条件下质子电导率最高达到6.26×10-4 S/cm.  相似文献   

2.
研究建立了电化学循环伏安法(CV)测定磷酸掺杂聚苯并咪唑(PBI)膜甲醇透过率的方法.以磷酸溶液为电解质,在扫描电压范围-0.2~1.2 V和扫描速度100 m V/s的条件下测试了不同磷酸掺杂水平PBI膜的甲醇透过率.研究表明,根据膜样品酸掺杂水平选择磷酸电解质溶液的浓度可使待测PBI膜的酸掺杂水平在测定过程中保持不变,进而保障结果的准确性和可靠性;与纯PBI膜的甲醇透过率(1.34×10-8cm2/s)相比,磷酸掺杂PBI膜的甲醇透过率有所增加,当PBI膜的酸掺杂水平为2.5~3.2时,膜的甲醇透过率为3.2×10-8~14×10-8cm2/s.  相似文献   

3.
为了降低磺化聚醚醚酮(SPEEK)的溶胀性和甲醇渗透性,采用原位聚合的方法,将具有良好溶解性的聚苯并咪唑(PBI)中间体-聚甲亚胺(PAM)预聚物加入到SPEEK基体中,在一定条件下原位反应使PAM相对分子质量增加,通过氧化得到SPEEK/PBI酸碱共混膜。研究发现:PBI的引入有效地降低膜的溶胀性和甲醇渗透性。随着PBI含量的增加,质子电导率逐渐降低,当PBI含量为5%时,共混膜70℃时电导率可以达到205 mS/cm,与该温度下Nafion117(200mS/cm)相当。当PBI含量在9%~10%范围内,共混膜具有相对较好的综合性能。  相似文献   

4.
目的探究高温酸化时在酸化剂中加入不同含量的H2SO4对PBI膜和高温燃料电池电极的影响.方法质子交换膜是高温质子交换膜(HT-PEM)燃料电池的核心部件,对燃料电池的性能起到主导作用.笔者制备了酸化剂中掺杂不同量H2SO4的PBI膜,测试了高温PBI燃料电池的I-V特性和交流阻抗特性,对比了PBI膜表面SEM照片的差异,分析了高温PBI膜掺杂硫酸的含量和电池温度对高温燃料电池性能的影响.结果研究发现:高温PEM燃料电池的PBI膜在高温酸化时及高温燃料电池运行时,H2SO4的强氧化性起主导作用,破坏了PBI膜的内部结构,阻碍了质子的传递,对PBI膜和燃料电池电极均有损伤.结论酸化剂中掺杂强电解质强氧化性的H2SO4不利于高温PBI膜燃料电池性能的提高,虽然常温下经H2SO4处理后的PBI膜的电导率能够显著提高,但高温运行的PBI膜燃料电池的性能有明显下降.H2SO4的加入对PBI膜的电导率没有明显的提升,反而对高温燃料电池的性能有所抑制.掺杂强电解质H2SO4对提升电池性能是不合适的.  相似文献   

5.
研究了一种新型耐高温聚合物电解质膜的制备方法.以聚偏氟乙烯(PVDF)为增强材料,以甲基咪唑功能化聚芳醚酮(MeIm-PAEK)为基体材料,通过两者共混制备了具有较高电导率和良好尺寸稳定性的膜材料,并研究膜材料组分对膜材料性能的影响.1H NMR 证实了咪唑基团的接枝成功.磷酸掺杂实验表明:甲基咪唑的功能化,使MeIm-PAEK膜具备较强的吸附磷酸能力;随着咪唑基团接枝度的增加,MeIm-PAEK膜的磷酸掺杂含量显著增加.通过与PVDF复合,显著地改善MeIm-PAEK膜在高温下、高浓度磷酸掺杂后的尺寸稳定性.70MeIm-PAEK/PVDF复合膜经85%磷酸溶液掺杂后,膜材料的磷酸掺杂质量分数为226%,体积溶胀率为248%,180℃不加湿条件下的电导率为0.141S/cm,适合做高温聚合物电解质膜材料.  相似文献   

6.
杂多酸掺杂PAN-SiO2复合质子交换膜的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了杂多酸掺杂聚丙烯腈-二氧化硅(PAN-SiO2)复合质子交换膜,并研究了其质子导电性能、保水能力和抗化学氧化性能.研究结果表明,该有机/无机复合质子交换膜的室温质子电导率为10-6S.cm-1左右,SiO2和杂多酸的加入使得该复合膜可以在较高温度下使用,而且随着温度的升高质子电导率可提高1~2个数量级,在140℃的中温工作条件下质子电导率则可达10-4S.cm-1.同时SiO2和杂多酸的加入能有效提高中温条件下该复合膜的保水率.与纯聚合物相比,复合膜的抗化学氧化能力显著提高.  相似文献   

7.
以碳酸钾为催化剂由乙烯-乙烯醇共聚物(EVOH)与1,3丙烷磺酸内酯(PS)的磺化反应制得离子聚合物(EVOH-g-SO3K),该离子聚合物透析后通过流延法成膜得到质子交换膜(EVOH-g-SO3H).探讨了离子交换容量(IEC)对质子交换膜传导率的影响,当K2CO3/PS摩尔比为1:2,PS用量为0.03mol,IEC=0.67mmol/g时电导率达到最大值0.003S/cm;研究了S-EVOH与EVOH溶液共混后其质子传导率的变化,当S-EVOH/EVOH的质量比为7∶3时电导率可达到0.012S/cm.研究了质子交换膜的质子传导率,离子交换容量(IEC),热学方面的性能.  相似文献   

8.
基于聚酰亚胺的非水质子导电材料的研究   总被引:2,自引:0,他引:2  
制备了基于磷酸掺杂聚酰亚胺(PI)的非水质子导电材料,研究了其质子导电性能和导电机理,发现常温下PI与磷酸之间的作用以氢键为主.常温电导率不高,随着温度的升高,链段运动的加快也能促进质子的输送,两种结构PI的电导率对温度的依赖性更接近VTF方程或WLF方程.与磷酸复合后膜的热稳定性和氧化稳定性略有下降,但膜的综合性能仍有一定的实用性.  相似文献   

9.
以浓硫酸为磺化试剂制备相同磺化度的磺化聚醚醚酮(SPEEK),采用等体积的水/醇混合溶剂通过溶液成膜的方法制备SPEEK质子交换膜,采用交流阻抗法、扩散池法评价膜的质子传导能力和阻醇性能,探讨溶液成膜温度对质子交换膜性能的影响规律。结果表明,采用水/醇混合物为溶剂的质子交换膜,随着成膜温度的提高,膜的吸水率、溶胀率、质子电导率和甲醇渗透率均降低。  相似文献   

10.
通过高温溶液缩聚法,将1,4,5,8-萘四甲酸二酐与6,6’-二[2-(4-氨基苯)苯并咪唑]、3,3’-二(4-苯磺酸)-联苯胺反应,得到一系列相对分子质量较高的磺化聚(酰亚胺-苯并咪唑)。将聚合物制备成薄膜,苯并咪唑单元的引入使得磺化聚酰亚胺质子交换膜中形成了咪唑-磺酸之间的酸碱离子交联结构,提高了膜的力学强度、尺寸稳定性、氧化及水解稳定性。质子电导率测试结果表明,薄膜的质子电导率为0.19 S/cm,高于同等测试条件下Nafion115膜的质子电导率(0.13S/cm)。  相似文献   

11.
通过磷酸掺杂的方法增强PBI膜表面的亲水性,使PBI基底与性能优异的银纳米线良好结合。其水接触角由磷酸掺杂前的84°降低到掺杂后的28°,表明其亲水性有显著增强. 通过滴涂的方法在磷酸掺杂PBI膜表面滴涂银纳米线,制备了一系列以PBI为基底的柔性导电材料PA-PBI-Ag. 扫描电镜照片显示,银纳米线在PBI膜表面均匀分布,呈交联网络状,其导电性良好。方块电阻可低至1.2 Ω, 其耐弯曲性良好,弯折1 000次依旧保持良好的导电性. PA-PBI-Ag制备方法简便,性能优良,有良好的应用前景.   相似文献   

12.
介绍了交流阻抗谱法测试质子交换膜质子电导率的原理与等效电路.并以Nafion117膜为例介绍了采用交流阻抗法测试其电导率的测试夹具及测试平台的设计和搭建,给出了Nafion117膜的交流阻抗谱图以及膜质子电导率随温度的变化曲线.采用交流阻抗法测试质子交换膜的电导率是质子交换膜燃料电池性能测试的重要手段.  相似文献   

13.
水与非水磷酸体系质子电导率   总被引:1,自引:1,他引:0  
以咪唑和吡啶与磷酸组成非水质子导体体系,研究了该体系的非水质子电导率及质子传递机理,以考察有机含氮杂环化合物为质子载体的非水质子传递的可行性.研究表明,对于咪唑(吡啶)-磷酸非水体系,其质子迁移的主要影响因素是黏度;有机含氮杂环化合物不能像水分子一样起到降低磷酸黏度的作用,反而使其黏度增加.电导率的测定结果表明,非水条件下磷酸的自解离传递质子的能力优于磷酸与有机含氮杂环化合物共同传递质子的能力.对于咪唑-磷酸水溶液,其电导率除了与体系的黏度有关外,还与离子迁移数及迁移速率等有关.  相似文献   

14.
采用溶液浇注法分别制备了全氟磺酸质子交换膜(CEM)和掺杂了0.5%炭黑(质量分数)的掺杂全氟磺酸质子交换膜(CEM-C),并将两种膜应用于自制的电吸附脱盐模块中处理高浓度氯化钠溶液。采用交流阻抗法计算了两种膜的质子电导率;用XRD,SEM表征了其结构性能;在电吸附试验中,考察了这两种膜以及流速、电压对电吸附性能的影响。结果表明,CEM-C膜与CEM膜相比,CEM-C的质子电导率提高了35%,电吸附量和出水浓度的稳定性都有很大的提高。  相似文献   

15.
以离子液体1-丁基-3-甲基咪唑磷酸二氢盐(BMIMH2PO4)与杂多酸,即磷钨酸(PWA)和硅钨酸(SiWA)为原料,制备了非水复合质子导体.研究了该复合质子导体在80~180℃不加湿条件下的电导率,探讨了PWA/BMIMH2PO4复合体系的质子传导机理.研究表明,在PWA/BMIMH2PO4中掺杂P2O5可以提高体系的质子电导率,而共存的离子液体具有促进质子传导的作用.在160℃非水条件下,当PWA与BMIMH2PO4摩尔比为1∶3时,复合质子导体PWA/BMIMH2PO4的电导率为2.6×10-3S/cm,而掺杂P2O5的质量分数为10%时,PWA/BMIMH2PO4/P2O5的电导率则...  相似文献   

16.
以氯磺酸为磺化剂,以二氯甲烷为溶剂,在室温下合成了磺化聚醚砜(SPES),并采用红外光谱证明了SPES中-SO3H基团的存在。采用流延法制备了SPES膜和PES/SPES共混膜。SPES膜在室温下的电导率和甲醇透过系数随着磺化度的增大而增大。由于PES/SPES共混膜存在相分离行为,导致其甲醇透过系数随PES的含量增加而降低。PES的加入降低了共混膜-SO3H基团的浓度,导致共混膜的电导率也降低。所制备SPES膜和PES/SPES共混膜表现了较好的质子传导性能和阻醇性能,有望作为直接甲醇燃料电池用质子交换膜。  相似文献   

17.
通过阳离子开环聚合制备了一系列不同比例的3-丙烯酰氧甲基-3'-甲基氧杂环丁烷(AMO)和3-[2-甲氧基(三乙氧基)]甲基-3'-甲基氧杂环丁烷(MEMO)的共聚物PAM. 通过1H-NMR谱图计算发现:AMO结构单元在共聚物中所占的比例均低于根据投料比计算的理论值. 把这些共聚物和LiTFSI复配后通过BPO引发自由基聚合可交联成膜,利用交流阻抗法测试了其离子电导率,其中MEMO含量最高的PAM33电导率最高,30℃时达1.44×10-5S/cm ,80℃时达1.25×10-4S/cm. DSC测试结果显示,共聚物中MEMO的结构单元含量越多,其Tg越低,越有利于导电.  相似文献   

18.
通过阳离子开环聚合制备了一系列不同比例的3-丙烯酰氧甲基-3′-甲基氧杂环丁烷(AMO)和3-[2-甲氧基(三乙氧基)]甲基-3′-甲基氧杂环丁烷(MEMO)的共聚物PAM.通过1H-NMR谱图计算发现:AMO结构单元在共聚物中所占的比例均低于根据投料比计算的理论值.把这些共聚物和LiTFSI复配后通过BPO引发自由基聚合可交联成膜,利用交流阻抗法测试了其离子电导率,其中MEMO含量最高的PAM33电导率最高,30℃时达1.44×10-5S/cm,80℃时达1.25×10-4S/cm.DSC测试结果显示,共聚物中MEMO的结构单元含量越多,其Tg越低,越有利于导电.  相似文献   

19.
采用4种有机质子酸为掺杂剂,氯化铁为氧化剂,通过化学氧化法制备了有机质子酸掺杂聚吡咯(PPy)。在两相溶液中制备了吡咯-甲基丙烯酸甲酯(Py-MMA)共聚物,研究了掺杂剂含量、氧化剂含量、单体甲基丙烯酸甲酯(MMA)含量、反应温度等因素对Py-MMA共聚物电导率及溶解性能的影响。结果表明,有机质子酸掺杂PPy可有效提高PPy的电导率。当以对甲苯磺酸(TsOH)作掺杂剂,掺杂剂与吡咯(Py)、氧化剂与Py单体物质的量之比均为1∶3、反应温度为5℃、反应时间为12 h时,所制得的有机质子酸掺杂PPy的导电性能最好。与PPy相比,Py-MMA共聚物的溶解性能得到明显提高。当MMA、K_2S_2O_8、Py、TsOH物质的量之比为2∶3∶6∶4,反应温度为40℃,反应时间为4 h时,所制得的Py-MMA共聚物的溶解性能最佳,70℃时其在乙酸乙酯中的溶解度为5.56 g,表面电阻率为0.76Ω·cm。  相似文献   

20.
用磺化聚砜(SPSF)对Nafion膜改性,制备了一系列不同SPSF含量的复合膜,对制备的复合膜进行了红外光谱、甲醇渗透性和质子电导率的测试。实验结果表明,用SPSF对Nafion膜改性后,可以有效提高Na-fion膜的阻醇性能。当膜中SPSF含量为5%时(SPSF5%),复合膜表现出最佳阻醇效果。复合膜的质子电导率随膜中SPSF含量的增加而下降,SPSF 5%膜在室温下水平方向质子电导率是7.7×10-2S cm-1,与Nafion 112相比下降不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号