首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Neuropeptide coexistence in human cortical neurones   总被引:4,自引:0,他引:4  
  相似文献   

4.
5.
N V Swindale  M S Cynader 《Nature》1986,319(6054):591-593
The ability of human observers to detect Vernier breaks of as little as 5 s arc has been termed hyperacuity as this distance is substantially less than the angular separation of the bars of the highest spatial frequency of grating (approximately 1 arc min) that can be detected. Although the visual cortex is a likely candidate for the location of detectors involved in this performance, it is not known whether there are cells sensitive enough to detect deviations from co-linearity that are small compared with their spatial resolution (defined in terms of the highest spatial frequency that the cell can detect). We report here the results of physiological experiments on single units in area 17 of the cat visual cortex in which we studied the effect of introducing a Vernier break into a bar stimulus moved across the receptive field of the cell at a constant velocity. Our results show that the responses of most simple and complex cells are significantly reduced by the introduction of a Vernier break that is substantially smaller than the spatial resolution of the cell. The most sensitive cells in our sample could discriminate Vernier offsets of 3-6 arc min with a reliability of approximately 70%. This was much smaller than their spatial resolution, which was in the range 25-30 arc min. We interpret these results in terms of mechanisms that could underly the orientation selectivity of cortical neurones and suggest how our results relate to human Vernier acuity.  相似文献   

6.
7.
C Shaw  M Cynader 《Nature》1984,308(5961):731-734
Abundant evidence now indicates that atypical visual exposure early in the life of cats and primates can cause profound alterations in cortical organization. In particular, it has been shown that preventing the use of one eye for vision early in life results in a marked shift of ocular preference among neurones of kitten visual cortex in favour of the exposed eye. The cellular mechanisms underlying these alterations remain uncertain, but much recent attention has focused on the possible role of pharmacological agents in modifying cortical plasticity, with particular reference to catecholamines. These experiments, which have shown that agents which modify cortical noradrenaline levels can alter the degree of cortical plasticity, do not specify the mechanism of action, and leave open the possibility that other neurotransmitter systems may also be involved in cortical modifiability. We now report that chronic intracortical administration of L-glutamate during a period of monocular vision imposed on young kittens largely prevents the ocular dominance shift which normally occurs under these circumstances.  相似文献   

8.
9.
10.
11.
Fluctuations in the response to light of visual neurones in Limulus   总被引:1,自引:0,他引:1  
R Shapley 《Nature》1969,221(5179):437-440
  相似文献   

12.
Unexpected features of the action of dinitrophenol on cortical neurones   总被引:4,自引:0,他引:4  
J M Godfraind  K Krnjevi?  R Pumain 《Nature》1970,228(5271):562-564
  相似文献   

13.
14.
C D Gilbert  T N Wiesel 《Nature》1979,280(5718):120-125
The neuronal structure and connectivity underlying receptive field organisation of cells in the cat visual cortex have been investigated. Intracellular recordings were made using a micropipette filled with a histochemical marker, which was injected into the cells after their receptive fields had been characterised. This allowed visualisation of the dendritic and axonal arborisations of functionally identified neurones.  相似文献   

15.
In the cerebral cortex, local circuits consist of tens of thousands of neurons, each of which makes thousands of synaptic connections. Perhaps the biggest impediment to understanding these networks is that we have no wiring diagrams of their interconnections. Even if we had a partial or complete wiring diagram, however, understanding the network would also require information about each neuron's function. Here we show that the relationship between structure and function can be studied in the cortex with a combination of in vivo physiology and network anatomy. We used two-photon calcium imaging to characterize a functional property--the preferred stimulus orientation--of a group of neurons in the mouse primary visual cortex. Large-scale electron microscopy of serial thin sections was then used to trace a portion of these neurons' local network. Consistent with a prediction from recent physiological experiments, inhibitory interneurons received convergent anatomical input from nearby excitatory neurons with a broad range of preferred orientations, although weak biases could not be rejected.  相似文献   

16.
A cellular analogue of visual cortical plasticity   总被引:6,自引:0,他引:6  
Y Frégnac  D Shulz  S Thorpe  E Bienenstock 《Nature》1988,333(6171):367-370
Neuronal activity plays an important role in the development of the visual pathway. The modulation of synaptic transmission by temporal correlation between pre- and postsynaptic activity is one mechanism which could underly visual cortical plasticity. We report here that functional changes in single neurons of area 17, analogous to those known to take place during epigenesis of visual cortex, can be induced experimentally during the time of recording. This was done by a differential pairing procedure, during which iontophoresis was used to artificially increase the visual response for a given stimulus, and to decrease (or block) the response for a second stimulus which differed in ocularity or orientation. Long-term modifications in ocular dominance and orientation selectivity were produced in 33% and 43% of recorded cells respectively. Neuronal selectivity was nearly always displaced towards the stimulus paired with the reinforced visual response. The largest changes were obtained at the peak of the critical period in normally reared and visually deprived kittens, but changes were also observed in adults. Our findings support the role of temporal correlation between pre- and postsynaptic activity in the induction of long-lasting modifications of synaptic transmission during development, and in associative learning.  相似文献   

17.
Spontaneously emerging cortical representations of visual attributes   总被引:1,自引:0,他引:1  
Kenet T  Bibitchkov D  Tsodyks M  Grinvald A  Arieli A 《Nature》2003,425(6961):954-956
Spontaneous cortical activity--ongoing activity in the absence of intentional sensory input--has been studied extensively, using methods ranging from EEG (electroencephalography), through voltage sensitive dye imaging, down to recordings from single neurons. Ongoing cortical activity has been shown to play a critical role in development, and must also be essential for processing sensory perception, because it modulates stimulus-evoked activity, and is correlated with behaviour. Yet its role in the processing of external information and its relationship to internal representations of sensory attributes remains unknown. Using voltage sensitive dye imaging, we previously established a close link between ongoing activity in the visual cortex of anaesthetized cats and the spontaneous firing of a single neuron. Here we report that such activity encompasses a set of dynamically switching cortical states, many of which correspond closely to orientation maps. When such an orientation state emerged spontaneously, it spanned several hypercolumns and was often followed by a state corresponding to a proximal orientation. We suggest that dynamically switching cortical states could represent the brain's internal context, and therefore reflect or influence memory, perception and behaviour.  相似文献   

18.
Maffei A  Nataraj K  Nelson SB  Turrigiano GG 《Nature》2006,443(7107):81-84
The fine-tuning of circuits in sensory cortex requires sensory experience during an early critical period. Visual deprivation during the critical period has catastrophic effects on visual function, including loss of visual responsiveness to the deprived eye, reduced visual acuity, and loss of tuning to many stimulus characteristics. These changes occur faster than the remodelling of thalamocortical axons, but the intracortical plasticity mechanisms that underlie them are incompletely understood. Long-term depression of excitatory intracortical synapses has been proposed as a general candidate mechanism for the loss of cortical responsiveness after visual deprivation. Alternatively (or in addition), the decreased ability of the deprived eye to activate cortical neurons could be due to enhanced intracortical inhibition. Here we show that visual deprivation leaves excitatory connections in layer 4 (the primary input layer to cortex) unaffected, but markedly potentiates inhibitory feedback between fast-spiking basket cells (FS cells) and star pyramidal neurons (star pyramids). Further, a previously undescribed form of long-term potentiation of inhibition (LTPi) could be induced at synapses from FS cells to star pyramids, and was occluded by previous visual deprivation. These data suggest that potentiation of inhibition is a major cellular mechanism underlying the deprivation-induced degradation of visual function, and that this form of LTPi is important in fine-tuning cortical circuitry in response to visual experience.  相似文献   

19.
Jancke D  Chavane F  Naaman S  Grinvald A 《Nature》2004,428(6981):423-426
Exploring visual illusions reveals fundamental principles of cortical processing. Illusory motion perception of non-moving stimuli was described almost a century ago by Gestalt psychologists. However, the underlying neuronal mechanisms remain unknown. To explore cortical mechanisms underlying the 'line-motion' illusion, we used real-time optical imaging, which is highly sensitive to subthreshold activity. We examined, in the visual cortex of the anaesthetized cat, responses to five stimuli: a stationary small square and a long bar; a moving square; a drawn-out bar; and the well-known line-motion illusion, a stationary square briefly preceding a long stationary bar presentation. Whereas flashing the bar alone evoked the expected localized, short latency and high amplitude activity patterns, presenting a square 60-100 ms before a bar induced the dynamic activity patterns resembling that of fast movement. The preceding square, even though physically non-moving, created gradually propagating subthreshold cortical activity that must contribute to illusory motion, because it was indistinguishable from cortical representations of real motion in this area. These findings demonstrate the effect of spatio-temporal patterns of subthreshold synaptic potentials on cortical processing and the shaping of perception.  相似文献   

20.
Modulation of visual cortical plasticity by acetylcholine and noradrenaline   总被引:19,自引:0,他引:19  
M F Bear  W Singer 《Nature》1986,320(6058):172-176
During a critical period of postnatal development, the temporary closure of one eye in kittens will permanently shift the ocular dominance (OD) of neurones in the striate cortex to the eye that remains open. The OD plasticity can be substantially reduced if the cortex is infused continuously with the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) during the period of monocular deprivation, an effect that has been attributed to selective depletion of cortical noradrenaline. However, several other methods causing noradrenaline (NA) depletion leave the plasticity intact. Here we present a possible explanation for the conflicting results. Combined destruction of the cortical noradrenergic and cholinergic innervations reduces the physiological response to monocular deprivation although lesions of either system alone are ineffective. We also find that 6-OHDA can interfere directly with the action of acetylcholine (ACh) on cortical neurones. Taken together, our results suggest that intracortical 6-OHDA disrupts plasticity by interfering with both cholinergic and noradrenergic transmission and raise the possibility that ACh and NA facilitate synaptic modifications in the striate cortex by a common molecular mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号