首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein p27Kip1 is an inhibitor of cell division. An increase in p27 causes proliferating cells to exit from the cell cycle, and a decrease in p27 is necessary for quiescent cells to resume division. Abnormally low amounts of p27 are associated with pathological states of excessive cell proliferation, especially cancers. In normal and tumour cells, p27 is regulated primarily at the level of translation and protein turnover. Phosphorylation of p27 on threonine 187 (T187) by cyclin-dependent kinase 2 (Cdk2) is thought to initiate the major pathway for p27 proteolysis. To critically test the importance of this pathway in vivo, we replaced the murine p27 gene with one that encoded alanine instead of threonine at position 187 (p27T187A). Here we show that cells expressing p27T187A were unable to downregulate p27 during the S and G2 phases of the cell cycle, but that this had a surprisingly modest effect on cell proliferation both in vitro and in vivo. Our efforts to explain this unexpected result led to the discovery of a second proteolytic pathway for controlling p27, one that is activated by mitogens and degrades p27 exclusively during G1.  相似文献   

2.
Cdk1 is sufficient to drive the mammalian cell cycle   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
White PM  Doetzlhofer A  Lee YS  Groves AK  Segil N 《Nature》2006,441(7096):984-987
Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.  相似文献   

5.
Wei W  Ayad NG  Wan Y  Zhang GJ  Kirschner MW  Kaelin WG 《Nature》2004,428(6979):194-198
Cell-cycle transitions are driven by waves of ubiquitin-dependent degradation of key cell-cycle regulators. SCF (Skp1/Cullin/F-box protein) complexes and anaphase-promoting complexes (APC) represent two major classes of ubiquitin ligases whose activities are thought to regulate primarily the G1/S and metaphase/anaphase cell-cycle transitions, respectively. The major target of the Skp1/Cul1/Skp2 (SCF(SKP2)) complex is thought to be the Cdk inhibitor p27 during S phase, whereas the principal targets for the APC are thought to be involved in chromatid separation (securin) and exit from mitosis (cyclin B). Although the role of the APC in mitosis is relatively clear, there is mounting evidence that APCs containing Cdh1 (APC(CDH1)) also have a function in the G1 phase of the cell cycle. Here, we show that the F-box protein Skp2 is polyubiquitinated, and hence earmarked for destruction, by APC(CDH1). As a result, accumulation of SCF(SKP2) requires prior inactivation of APC(CDH1). These findings provide an insight into the orchestration of SCF and APC activities during cell-cycle progression, and into the involvement of the APC in G1.  相似文献   

6.
Mouse p53 inhibits SV40 origin-dependent DNA replication   总被引:52,自引:0,他引:52  
p53 is a cellular phosphoprotein that is present at elevated concentrations in cells transformed by different agents. p53 complementary DNA expression-constructs immortalize primary cells in vitro and co-operate with an activated ras oncogene in malignant transformation. Several reports have implicated p53 in mammalian cell cycle control and specifically with events occurring at the G0-G1 boundary. p53 forms specific complexes with simian virus 40 (SV40) large-T antigen, and such complexes are found associated with both replicating and mature SV40 DNA in lytically infected cells. In an accompanying paper Gannon and Lane report that in in vitro plate-binding assays, mouse p53 can displace polymerase alpha from complex with T-antigen. We have examined the in vivo consequences of expressing wild-type and mutant p53 proteins from other species in SV40-transformed monkey cells. We report here that expression of mouse p53 results in a substantial and selective inhibition of SV40 origin-dependent DNA replication. In addition to any function in the G0-G1 transition, the data presented suggest that p53 may affect directly the initiation or maintenance of replicative DNA synthesis.  相似文献   

7.
PURPOSE: To investigate the relationship between expression of cell cycle-related protein cyclin D1, p27kip1 and the pathogenesis of bronchioloalveolar carcinoma (BAC) and the value of prediction of prognosis. METHODS: Cyclin D1 and p27kip1 protein were detected by immunohistochemical En Vision method in 43 BACs. RESULTS: The positivity of cyclin D1 in BAC was 65.1% (28/43), which was significantly higher than that in normal pulmonary tissue (0/13), P<0.01. No statistically significant association was found between cyclin D1 expression data and sex, age, tobacco-use history, histologic subtype (mucinous vs nonmucinous), stromal fibrosis, lymph node metastasis, clinical stage or postoperative survival period (P>0.05), while cyclin D1 expression was found to be negatively correlated with tumor size (P<0.05). The positivity of p27kip1 in BACs was 51.2% (22/43), significantly lower than that in normal pulmonary tissue (12/13), P<0.01. p27kip1 expression level was not associated with sex, age, tobacco-use history, tumor size or histologic subtype (P>0.05), but was negatively correlated with stromal fibrosis, lymph node metastasis and clinical stage (P<0.05); and positively associated with postoperative survival period (P<0.01). The survival rate of p27kip1 positive group was significantly higher than that of p27kip1 negative group (P<0.01). No statistically significant correlation was found between cyclin D1 and p27kip1 expression. CONCLUSIONS: Increased cyclin D1 expression and decreased p27kip1 expression are related to the pathogenesis of BAC; decreased p27kip1 expression is associated with metastasis progression; immunodetection of p27kip1 is useful for assessment of prognosis.  相似文献   

8.
研究白屈菜碱对人胃癌SGC-7901细胞Cdk1、p-Cdk1(Thr14)、cyclinB1蛋白表达,探讨白屈菜碱诱导人胃癌SGC-7901细胞G2/M期阻滞的机制.采用Western blotting法测定白屈菜碱对SGC-7901细胞Cdk1、p-Cdk1(Thr14)、cyclinB1蛋白表达的影响.不同质量浓度的白屈菜碱可显著下调人胃癌SGC-7901细胞内Cdk1与cyclinB1蛋白表达水平,同时显著上调p-Cdk1(Thr14)蛋白的表达水平,并呈一定的剂量依赖性.白屈菜碱可下调SGC-7901细胞内Cdk1和cyclinB1蛋白的表达,上调p-Cdk1(Thr14)蛋白的表达,这可能是白屈菜碱诱导SGC-7901细胞G2/M期阻滞的主要机制之一.  相似文献   

9.
Deregulated cyclin E induces chromosome instability.   总被引:48,自引:0,他引:48  
C H Spruck  K A Won  S I Reed 《Nature》1999,401(6750):297-300
Cyclin E, a regulatory subunit of cyclin-dependent kinase 2 (Cdk2), is an important regulator of entry into S phase in the mammalian cell cycle. In normal dividing cells, cyclin E accumulates at the G1/S-phase boundary and is degraded as cells progress through S phase. However, in many human tumours cyclin E is overexpressed and the levels of protein and kinase activity are often deregulated relative to the cell cycle. It is not understood how alterations in expression of cyclin E contribute to tumorigenesis. Here we show that constitutive cyclin-E overexpression in both immortalized rat embryo fibroblasts and human breast epithelial cells results in chromosome instability (CIN). In contrast, analogous expression of cyclin D1 or A does not increase the frequency of CIN. Cyclin-E-expressing cells that exhibit CIN have normal centrosome numbers. However, constitutive overexpression of cyclin E impairs S-phase progression, indicating that aberrant regulation of this process may be responsible for the CIN observed. These results indicate that downregulation of cyclin-E/Cdk2 kinase activity following the G1/S-phase transition may be necessary for the maintenance of karyotypic stability.  相似文献   

10.
Using the transfeetion teehnique. P15INK4b was introduced into P15INk4b gene deleted human melanoma A375 cells,and a cell model MLED6 overexpressing P15INK4b WAS CONSTRUCTED.Comparing with the control cells MLC2,MLEK6cells in G1phase increased by 11%,but those in Sphase decreased by 15%by FCM.By the method of thymidine(TdR)and N2O arresting,the proportions of synchronized Mphase cells of MLEK6 ana MLC23 were measured and found to be 89.1% and 76.8%respectively ,and the cells in G1phase were 74.3% for MLID6 AND 76. 4% forMLC2.The result of3 H-TdR incorporation indicated that the transition of G1/Sof MLEK6 cell was delayed 2h as compared with that of MLC2 cells,and incorporation rate also decreased.The observation on exprissions of some G1/ S-resates relatory rigusating genes showed that in MLIK6 cells the protein leves of P27KIPI increased with the decreasing expressions of cyclinD1,cyclinE and c-myc,especially cyclinD1 in late G1phade.The expression of cyclinE obviously decreased at G1/S transition ,and c-myc wad inhibited throughout all the process of G1 S phase.All the risults suggest that P15INK4b can delayG1/S transition of MLEK6 cells by inhibiting the cell cycle engine ,and by increasing the expression of Cdk ingibitor P27KIPI in different stages of G1 phase.  相似文献   

11.
Skp2 and its cofactor Cks1 are the substrate-targeting subunits of the SCF(Skp2-Cks1) (Skp1/Cul1/F-box protein) ubiquitin ligase complex that regulates entry into S phase by inducing the degradation of the cyclin-dependent kinase inhibitors p21 and p27 (ref. 1). Skp2 is an oncoprotein that often shows increased expression in human cancers; however, the mechanism that regulates its cellular abundance is not well understood. Here we show that both Skp2 and Cks1 proteins are unstable in G1 and that their degradation is mediated by the ubiquitin ligase APC/C(Cdh1) (anaphase-promoting complex/cyclosome and its activator Cdh1). Silencing of Cdh1 by RNA interference in G1 cells stabilizes Skp2 and Cks1, with a consequent increase in p21 and p27 proteolysis. Depletion of Cdh1 also increases the percentage of cells in S phase, whereas concomitant downregulation of Skp2 reverses this effect, showing that Skp2 is an essential target of APC/C(Cdh1). Expression of a stable Skp2 mutant that cannot bind APC/C(Cdh1) induces premature entry into S phase. Thus, the induction of Skp2 and Cks1 degradation in G1 represents a principal mechanism by which APC/C(Cdh1) prevents the unscheduled degradation of SCF(Skp2-Cks1) substrates and maintains the G1 state.  相似文献   

12.
Induction of autophagy and inhibition of tumorigenesis by beclin 1   总被引:95,自引:0,他引:95  
Liang XH  Jackson S  Seaman M  Brown K  Kempkes B  Hibshoosh H  Levine B 《Nature》1999,402(6762):672-676
The process of autophagy, or bulk degradation of cellular proteins through an autophagosomic-lysosomal pathway, is important in normal growth control and may be defective in tumour cells. However, little is known about the genetic mediators of autophagy in mammalian cells or their role in tumour development. The mammalian gene encoding Beclin 1, a novel Bcl-2-interacting, coiled-coil protein, has structural similarity to the yeast autophagy gene, apg6/vps30, and is mono-allelically deleted in 40-75% of sporadic human breast cancers and ovarian cancers. Here we show, using gene-transfer techniques, that beclin 1 promotes autophagy in autophagy-defective yeast with a targeted disruption of agp6/vps30, and in human MCF7 breast carcinoma cells. The autophagy-promoting activity of beclin 1 in MCF7 cells is associated with inhibition of MCF7 cellular proliferation, in vitro clonigenicity and tumorigenesis in nude mice. Furthermore, endogenous Beclin 1 protein expression is frequently low in human breast epithelial carcinoma cell lines and tissue, but is expressed ubiquitously at high levels in normal breast epithelia. Thus, beclin 1 is a mammalian autophagy gene that can inhibit tumorigenesis and is expressed at decreased levels in human breast carcinoma. These findings suggest that decreased expression of autophagy proteins may contribute to the development or progression of breast and other human malignancies.  相似文献   

13.
WAVE1--the Wiskott-Aldrich syndrome protein (WASP)--family verprolin homologous protein 1--is a key regulator of actin-dependent morphological processes in mammals, through its ability to activate the actin-related protein (Arp2/3) complex. Here we show that WAVE1 is phosphorylated at multiple sites by cyclin-dependent kinase 5 (Cdk5) both in vitro and in intact mouse neurons. Phosphorylation of WAVE1 by Cdk5 inhibits its ability to regulate Arp2/3 complex-dependent actin polymerization. Loss of WAVE1 function in vivo or in cultured neurons results in a decrease in mature dendritic spines. Expression of a dephosphorylation-mimic mutant of WAVE1 reverses this loss of WAVE1 function in spine morphology, but expression of a phosphorylation-mimic mutant does not. Cyclic AMP (cAMP) signalling reduces phosphorylation of the Cdk5 sites in WAVE1, and increases spine density in a WAVE1-dependent manner. Our data suggest that phosphorylation/dephosphorylation of WAVE1 in neurons has an important role in the formation of the filamentous actin cytoskeleton, and thus in the regulation of dendritic spine morphology.  相似文献   

14.
Cyclin-dependent kinase 5 (Cdk5) is required for proper development of the mammalian central nervous system. To be activated, Cdk5 has to associate with its regulatory subunit, p35. We have found that p25, a truncated form of p35, accumulates in neurons in the brains of patients with Alzheimer's disease. This accumulation correlates with an increase in Cdk5 kinase activity. Unlike p35, p25 is not readily degraded, and binding of p25 to Cdk5 constitutively activates Cdk5, changes its cellular location and alters its substrate specificity. In vivo the p25/Cdk5 complex hyperphosphorylates tau, which reduces tau's ability to associate with microtubules. Moreover, expression of the p25/Cdk5 complex in cultured primary neurons induces cytoskeletal disruption, morphological degeneration and apoptosis. These findings indicate that cleavage of p35, followed by accumulation of p25, may be involved in the pathogenesis of cytoskeletal abnormalities and neuronal death in neurodegenerative diseases.  相似文献   

15.
Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes, here we analysed the effect of the loss of function of 70% of Drosophila genes (including 90% of genes conserved in human) on cell-cycle progression of S2 cells using flow cytometry. To address redundancy, we also targeted genes involved in protein phosphorylation simultaneously with their homologues. We identify genes that control cell size, cytokinesis, cell death and/or apoptosis, and the G1 and G2/M phases of the cell cycle. Classification of the genes into pathways by unsupervised hierarchical clustering on the basis of these phenotypes shows that, in addition to classical regulatory mechanisms such as Myc/Max, Cyclin/Cdk and E2F, cell-cycle progression in S2 cells is controlled by vesicular and nuclear transport proteins, COP9 signalosome activity and four extracellular-signal-regulated pathways (Wnt, p38betaMAPK, FRAP/TOR and JAK/STAT). In addition, by simultaneously analysing several phenotypes, we identify a translational regulator, eIF-3p66, that specifically affects the Cyclin/Cdk pathway activity.  相似文献   

16.
17.
Elongation factor-1 alpha gene determines susceptibility to transformation.   总被引:14,自引:0,他引:14  
M Tatsuka  H Mitsui  M Wada  A Nagata  H Nojima  H Okayama 《Nature》1992,359(6393):333-336
Elongation factor-1 alpha (EF-1 alpha), an essential component of the eukaryotic translational apparatus, is a GTP-binding protein that catalyses the binding of aminoacyl-transfer RNAs to the ribosome. Expression of the EF-1 alpha gene decreases towards the end of the lifespans of mouse and human fibroblasts, but forced expression of EF-1 alpha prolongs the lifespan of Drosophila melanogaster. Eukaryotic initiation factor-4E, another component of the translational machinery, is mitogenic or oncogenic when constitutively expressed in some mammalian cells. Thus, components of the protein synthesis apparatus seem to be involved in the control of cell proliferation. Using expression cloning, we have isolated a complementary DNA clone from a BALB/c 3T3 mouse fibroblast variant, A31-I-13 (ref. 10), which specifies a factor determining the susceptibility of BALB/c3T3 to chemically and physically induced transformation. Here we report that the factor is EF-1 alpha and that its constitutive expression causes BALB/c 3T3 A31-I-1 (ref. 10), C3H10T1/2 (ref. 11) and Syrian hamster SHOK fibroblasts to become highly susceptible to transformation induced by 3-methylcholanthrene and ultraviolet light. EF-1 alpha messenger RNA is also constitutively expressed in a quiescent culture of the highly susceptible variant A31-I-13. We conclude that the removal of regulation of the expression of these components of the translational machinery may predispose cells to become more susceptible to malignant transformation.  相似文献   

18.
A guiding hypothesis for cell-cycle regulation asserts that regulated proteolysis constrains the directionality of certain cell-cycle transitions. Here we test this hypothesis for mitotic exit, which is regulated by degradation of the cyclin-dependent kinase 1 (Cdk1) activator, cyclin B. Application of chemical Cdk1 inhibitors to cells in mitosis induces cytokinesis and other normal aspects of mitotic exit, including cyclin B degradation. However, chromatid segregation fails, resulting in entrapment of chromatin in the midbody. If cyclin B degradation is blocked with a proteasome inhibitor or by expression of non-degradable cyclin B, Cdk inhibitors will nonetheless induce mitotic exit and cytokinesis. However, if after mitotic exit, the Cdk1 inhibitor is washed free from cells in which cyclin B degradation is blocked, the cells can revert back to M phase. This reversal is characterized by chromosome recondensation, nuclear envelope breakdown, assembly of microtubules into a mitotic spindle, and in most cases, dissolution of the midbody, reopening of the cleavage furrow, and realignment of chromosomes at the metaphase plate. These findings demonstrate that proteasome-dependent degradation of cyclin B provides directionality for the M phase to G1 transition.  相似文献   

19.
抑癌基因p27是一个细胞周期依赖性激酶抑制子CKI(CDK inhibitor),对细胞周期起着负调控的作用,将p27基因克隆到表达载体pcDNA,转染到肿瘤细胞MCF7中,筛选到稳定表达株.p27基因的过量表达确实对肿瘤细胞的生长产生了抑制作用,并且引发了部分肿瘤细胞的凋亡.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号