首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究了一族耦合非线性扩散方程,证明了与扩散方程族对应的每一有限非解都有可积的参数表示,通过线性同构,实现零曲率方程到向量场方程的转化,建立了特征值问题与对应的非线性Lenard特征值问题解空间的微分同胚,并得到了一个有限维Hamilton系统。  相似文献   

2.
利用第一屠规彰格式,从一个联系mKdV方程族的谱问题出发,构造了等谱(tλ=0)和非等谱(tλ=nλ)的孤子族,且给出了它的哈密尔顿形式,随后,利用文[2]和文[5]所提供的方法,给出了相应的Lax表示与零曲率表示.  相似文献   

3.
研究了一族耦合非线性扩散方程,证明了与该扩散方程族对应的每一有限带解都有可积的参数表示.通过线性同构,实现零曲率方程到向量场方程的转化,建立了特征值问题与对应的非线性Lenard特征值问题解空间的微分同胚,并得到了一个有限维Hamilton系统.  相似文献   

4.
本文利用孤子方程的换位表示方法,给出一族与谱问题相关联的非线性发展方程的Lax表示.  相似文献   

5.
文中研究了由谱问题所产生的Liouvile可积发展方程族。通过一个改进的算子方程的算子解给出了其Lax换位表示的结构,同时研究了一些换位表示的应用  相似文献   

6.
文中研究了由谱问题所产生的Liouville可积发展方程族。通过一个改进的算子方程的算子解给出了其Lax换位表示的结构,同时研究了一些换位表示的应用。  相似文献   

7.
《潍坊学院学报》2016,(6):32-35
孤立子理论的研究不断发展,在很多科学领域中都存在孤立子以及与孤立子理论密切联系的问题,可积耦合系统是在研究无中心的Virasoro对称代数或孤立子方程时产生的。人们已经找到多种求可积耦合的方法:1.摄动方法;2.扩大对应的Lax对的方法;3.扩展新的loop代数的方法;4.利用半直和李代数的方法,等等。提出一个离散的矩阵谱问题,由离散零曲率方程推导出一类新的可积晶格方程族。那么,获得的晶格方程族的拉克斯可积性得到证明。  相似文献   

8.
9.
利用微分几何方法,建立了批数族大线性模型下参数的置信域与统计模工率之间的一般联系,获得参数和子集参数置信域的3种曲率表示式,发展和推广了许多相关的结果。  相似文献   

10.
11.
求非线性演化方程精确解的新方法   总被引:1,自引:1,他引:1  
通过对文献[10]中所提出的试探函数法进行改进,提出了一种求非线性演化方程精确解的新方法,并用该方法求得了几个非线性演化方程的许多显式精确解。该方法也可用于求解其它非线性演化方程。  相似文献   

12.
利用新的辅助微分方程,描述了一个构造数学物理中非线性发展偏微分方程精确解的直接代数方法.借助这种方法,考察了某些具有重要应用背景的非线性发展偏微分方程,并且获得了丰富的新的精确行波解.所得结果推广了先前文献的结果.  相似文献   

13.
本文借助于偏微分方程的一些标准技巧对方程的非线性项进行估计,利用嵌入定理和算子半群的方法得到一类四阶非线性发展方程整体解和吸引子的存在唯一性.  相似文献   

14.
将文献[30]中所提出的求非线性演化方程精确解的新方法进行推广,求得了非线性数学物理中几个非常重要的非线性演化方程的精确解,包括一般形式的行波解、正则孤波解、奇异行波解等。本方法也可用于求解其它非线性演化方程。  相似文献   

15.
建立了求解非线性演化方程精确解的忒塔函数展开法,并在计算机代数系统上得以实现,推导出若干非线性波方程的双周期精确解.方法的基本思路是把方程的解表示为忒塔函数构成的多项式,从而将非线性演化方程的求解问题转化为非线性代数方程组的求解问题.利用计算机代数系统可求解所得非线性代数方程组,最终得到非线性演化方程的双周期精确解.  相似文献   

16.
韦维 《贵州科学》2002,20(1):27-35,51
本文讨论一类强非线性发展方程的反周期解的存在性。针对一大类既含有单调非线性算子又含有非单调非线性算子的发展方程。我们巧妙地结合单调算子理论与Leray-Schauder不动点理论,证明了其反周期解的存在性。最后,举例说明理论结果在2m阶拟线性抛物型方向的时间反周期问题中的应用。  相似文献   

17.
用直接方法结合假设方法求出一类非常广泛的非线性演化方程ui+αuux+βuxx+γuxxt+μ(uux)x+δuxxxx=0的一些显式精确解析解,这些解包括对流Cahn-Hilliard方程的钟状孤立解、扭状孤立波解、2种形式的奇异行波解、周期的三角函数波解,带耗散项的BBM-Burgers方程的扭状孤立波解、奇导行波解及周期的三角函数波解。  相似文献   

18.
对于非线性常微分方程一般不存在解析解,但是通过数值方法发现,有些非线性常微分方程的振荡渐近解是有规律的.因此,可以用最小二乘法等方法对这些数值解拟合出渐近解,在此基础上,再通过理论分析得出更具体的结果,为非线性微分方程的研究提供了一种途径.为了提高计算精度、避免计算过程出现崩溃,我们引入了数值解的函数变换和自变量变换的方法,这也保证了数值结果的可靠性.本文通过对数值解的渐近表示,验证了Painlevé方程振荡渐近解的一些现有结果,并得出一些新的结果.  相似文献   

19.
利用摄动法对非线性演化方程作展开。应用Jacobi椭圆函数展开法求得了零级近似方程的准确解,并在Lam啨方程和Lam啨函数的基础上分别求得一级近似方程和二级近似方程的准确解庋?就求得非线性演化方程的多级准确解。  相似文献   

20.
通过对Burgers方程和KdV方程解的分析,给出一般非线性发展方程的双曲函数型孤立波解之间的一个重要关系,即tanhα形式的解和(sinh 2α±√r^2-1)/(cosh 2α+r)形式的解在方程中是成对出现的,进而得到KdV-Burgers方程的新精确解,最后说明文献得到的精确解并不是KdV方程和KdV-Burgers方程的新精确解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号