首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
综采工作面的瓦斯涌出规律及涌出量的预测   总被引:10,自引:0,他引:10  
根据综合机械采煤的特点和瓦斯流动理论,将瓦斯涌出源划分为煤壁(围岩)瓦斯涌出、落煤瓦斯涌出、采空区(残煤)瓦斯涌出及上下邻近层(未采分层)瓦斯涌出4个部分。针对现有回采工作面瓦斯涌出量预测计算方法存在的问题,以煤层瓦斯流动理论和实测数据分析为基础,系统的研究了综采工作面涌出源瓦斯的涌出规律,结合综合机械化采煤具有采、装、运连续作业的特点,分别对各瓦斯涌出源的瓦斯涌出量进行预测,进而建立了一种适应性范围广且准确率高的综采工作面瓦斯涌出量预测模型,对制定瓦斯防治方案,进而根治矿井瓦斯具有重要的实际意义。并且运用该模型对潞安集团新建的屯留矿进行了瓦斯涌出量的预测。  相似文献   

2.
通过历年来工作面瓦斯涌出量数据,分析了东欢坨矿8煤层瓦斯涌出特征,研究了不同因素对8煤层瓦斯涌出规律的影响。研究结果表明:瓦斯涌出量随工作面开采深度的增加而增大;工作面相对瓦斯涌出量和遇到的断层数密切相关;靠近向斜轴一侧,瓦斯涌出量值普遍偏小,局部有异常存在;在远离向斜轴方向,瓦斯涌出量普遍较大;工作面瓦斯涌出量和工作面涌水量之间表现为负相关;顶板岩性对瓦斯涌出也有一定的影响。  相似文献   

3.
 针对山西某矿煤层瓦斯赋存特点及高瓦斯综放工作面开采条件,采用数值模拟和现场实测相结合的方法,研究了U+I 型通风采空区瓦斯流场以及瓦斯运移规律,分析了瓦斯涌出与产煤量和周期来压的关系。数值模拟结果表明;U+I 型通风可以有效降低回风巷和上隅角瓦斯体积分数;随着工作面推进,采空区后方形成的瓦斯富集带会不断扩大,回风侧后方瓦斯体积分数升高。现场实测结果表明:进风侧至工作面中部瓦斯体积分数变化幅度较小,靠近回风侧50 m 范围内瓦斯体积分数增加较快;绝对瓦斯涌出量与产煤量成近似线性关系,顶板初次来压后瓦斯涌出呈现周期性变化,经对比研究,数值模拟得到的瓦斯体积分数分布规律与现场实测结果相吻合;在采空区后方回风侧附近采用埋管抽放高浓度瓦斯是可行的,可以大量减少瓦斯涌出。  相似文献   

4.
在综合分析矿井瓦斯涌出量影响因素基础上,探讨了采煤工作面瓦斯涌出量与影响因素之间的关系,利用逐步回归分析方法建立了瓦斯涌出量预测数学模型,并将模型应用于平煤天安十矿己组煤层24110采面瓦斯涌出量预测. 结果证明,该数学模型对采煤工作面瓦斯涌出量预测比较准确.  相似文献   

5.
遗传规划在采煤工作面瓦斯涌出量预测中的应用   总被引:9,自引:1,他引:8  
采煤工作面瓦斯涌出量的预测对于矿井设计和安全生产有着重要意义.由于影响采煤工作面瓦斯涌出量的各因素之间关系不明确,而遗传规划特别适用于各影响因素之间因果关系不明确的复杂非线性问题,因此,它为预测采煤工作面瓦斯涌出量提供了一条新的技术途径.应用遗传规划理论,建立了采煤工作面瓦斯涌出量的预测模型.结果显示,预测精度满足要求.表明该方法是可行的、合理的  相似文献   

6.
矿井回采工作面瓦斯涌出量预测新途径   总被引:1,自引:0,他引:1  
在研究大量国内外矿井瓦斯涌出量预测方法的基础上,通过比较,分析灰色理论在矿井瓦斯涌出量预测方法中的优势,根据某矿102回采工作面的相关瓦斯涌出数据,以灰色预测理论为基础,通过对影响回采工作面瓦斯涌出量的关键因素分析,建立该工作面的瓦斯涌出量GM(1,1)预测模型,通过模型的求解,给出预测结果,并对结果进行检验.结果表明,该模型预测结果与生产实际吻合度较高,对煤矿瓦斯管理具有十分重要的指导意义.  相似文献   

7.
通过对近距离煤层开采高瓦斯综采工作面瓦斯涌出量的分析,指出工作面上隅角瓦斯涌出量大而治理难度也大,通过采取瓦斯的综合治理等措施,提高了瓦斯抽放率,提高了工作面单产,取得了较好的经济效益。  相似文献   

8.
翟文杰  周海  杨军伟 《科技信息》2013,(10):383-383
本文采用分段测点瓦斯法对某矿采煤矿工作面的瓦斯涌出状态进行数据测点,该工作瓦斯超限主要是由于上、下隅角瓦斯超限,因此上、下隅角的堵漏措施是防治采空区瓦斯涌出的主要措施。  相似文献   

9.
为降低赛尔能源三矿A4007工作面瓦斯含量,本文计算了巷道煤壁瓦斯涌出量、落煤瓦斯涌出量,以及开采层相对瓦斯涌出量,并分析了工作面瓦斯涌出规律.得出回采工作面相对瓦斯涌出量为1.54 m~3/t,绝对瓦斯涌出量为3.11 m~3/min,占涌出总量的15.6%,工作面瓦斯主要来源于采空区.针对性的提出工作面采用采空区埋/插管抽放,老空区封闭插管抽放,本煤层预抽、边采边抽、强化抽放,上隅角密闭抽放.对抽采效果进行检验,治理后上隅角瓦斯浓度基本控制在1%以下,其平均瓦斯浓度为0.668%,极小值为0.3%,极大值为0.84%.回风流瓦斯浓度基本控制在0.4%以下,平均瓦斯浓度为0.264%,极小值为0.12%,极大值为0.38%.  相似文献   

10.
结合实际,研究了矿井水采区瓦斯涌出规律,提出了水采区采煤工作面、掘进工作面瓦斯涌出量的合理计算公式及瓦斯超限的防止措施。  相似文献   

11.
采空区场流数值模拟程序(G3)实现与应用   总被引:1,自引:0,他引:1  
基于非均质多孔介质漏风渗流方程、分相气体(瓦斯、氧、CO)渗流-扩散方程和多孔介质渗流综合传热方程,建立了采空区安全(瓦斯、自然发火等)分析数值模型,开发了用迎风格式有限元方法联立求解计算机程序(G3).结合Y形通风形式采空区的求解实例,展示了G3能够适应各种复杂边界条件,并给出工作面开采条件下采空区内各相气体和温度变化的图形分布解G3中采空区按冒落非均质介质处理;考虑了瓦斯涌出对自燃的耦合作用,并能反映工作面推进、通风量等因素影响关系.可操作性好,能对各种情况做任意性模拟试验,便于从理论上描绘采空区漏风流态,动态描绘了瓦斯、氧、CO浓度和温度的分布状态及其变化过程.图7,参16.  相似文献   

12.
推导泻流分子的速度分布,讨论泻流速度分布与平衡态分子麦克斯韦速度分布的关系,并将它们的速度分量的分布、速率分布作了对比。泻流分子的分布律与容器内气体分子的分布具有一定的对应关系,但二者是有区别的。  相似文献   

13.
原油裂解气和干酪根裂解气的判识   总被引:4,自引:0,他引:4  
中国中西部的叠合盆地中,下古生界海相烃源岩已达高过成熟阶段,但却发现大量与之有关的原油裂解气.因此,如何区分原油裂解气和干酪根裂解气,成了一个亟需解决的问题.从天然气组分和轻烃组分切入,应用ln(C2/C3)-ln(C1/C2)判识模式及δ13C2-δ13C3与ln(C2/C3)判识模式认为四川盆地川东地区石炭系气藏为原油裂解气,而塔里木盆地轮南断垒和中部斜坡的气藏为干酪根裂解气.根据对典型干酪根和原油裂解气的分析,结合热模拟分析结果,提出了3项轻烃判识原油裂解气和干酪根裂解气界限值指标.  相似文献   

14.
工作面通风方式和风量对采空区沼气涌出量的影响不容忽视,作者通过模型实验对这种影响进行了定量分析。本文介绍了实验方法、装置和结果,提出了关于风量以及常见的几种工作面通风方式对采空区沼气涌出量影响的修正方法和系数。  相似文献   

15.
石油与天然气开采引起的地表下沉预测   总被引:1,自引:0,他引:1  
石油与天然气开采导致油气层中地下压力的减少,造成油气层的压密。当压密的数值达到一定量时,会引起地表下沉。本文主要介绍了油气开采引起地表下沉的机理和下沉危害,把油气开采引起的地表移动视为随机过程,以整个开采区域为研究对象,提出了下沉源函数和下沉传播分布函数,建立了开采引起地表下沉的预测模型,为研究油气开采引起的地表沉陷损害问题提供了理论依据。  相似文献   

16.
 为探讨松辽盆地双坨子气田天然气汞含量分布特征及其成因, 选取该气田7 口气井作为研究对象, 在对采集的天然气进行汞含量检测的同时, 开展天然气组分和烷烃碳同位素分析。检测结果显示, 双坨子气田天然气汞含量介于11~29200 ng/m3之间, 平均为17600 ng/m3, 属于中、低含汞天然气。双坨子气田天然气汞含量随产层深度的增加而增大, 深层天然气要远高于中、浅层天然气, 天然气汞含量的分布特征明显受该盆地双层地质结构的控制。研究表明, 双坨子气田汞含量分布特征既与天然气类型有关, 也与气源岩热演化程度有关。双坨子气田深层天然气为煤型气, 中、浅层气则为油型气或油型气-煤型气的混合气。气源岩热演化程度的不同, 是造成双坨子气田与其邻近的长深气田天然气汞含量差异较大的根本原因。  相似文献   

17.
巷帮立式预埋管抽放法治理隅角瓦斯   总被引:1,自引:0,他引:1  
为排除隅角瓦斯的安全隐患,通过对上隅角瓦斯来源、采空区瓦斯运动规律的分析,提出了巷帮立式预埋管抽放方法。在与其他抽放方法对比分析的基础上,设计了借助辅助措施的联合治理方案。经过双鸭山集贤煤矿生产实践,结果表明,该方法施工工艺简单、成本低、安全可靠、易于管理,有效地治理了隅角瓦斯,保证了采煤工作面安全生产,提高了开机率,在技术和经济上可行。  相似文献   

18.
锚杆锚索支护的回采巷道采后不及时冒落,形成特殊的沿空漏风边界的采空区流场.运用有限元数值模拟方法,结合铁法小青矿S2-705工作面现场实际,从理论上描绘了采空区漏风流动规律的改变特征,给出风流强度分布图解.研究认为,不冒落形成的沿空漏风边界是工作面向采空区的漏入、漏回的主流边界,漏风强度最高;贴近工作面边界的冒落非压实带存在平行渗流.这种流势导致了在下游回风侧的沿空巷道内形成瓦斯集聚,并提出了预先拆锚杆卸顶或局部通风机抽排放两种解决途径.图5,参5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号