首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
微流控芯片是近年来发展迅速的一个研究领域,其微型化、集成化、自动化的特性为人们所关注。芯片电色谱是微流控芯片的一个重要研究方向,兼具高效液相色谱的高选择性和毛细管电泳的高效性。本文介绍了芯片电色谱柱制造工艺的研究现状,并综述了微流控芯片上聚合物整体柱的研究进展。  相似文献   

3.
近年来,微流控芯片化学发光检测作为一种新型联用分析技术,发展非常迅速[1~3].以鲁米诺作为衍生试剂,戊二醛作交联剂,建立了微流控芯片化学发光检测色氨酸的新方法.优化了电泳分离条件(缓冲溶液种类、进样时间及分离电压)、化学发光检测条件(H2O2的浓度、K3Fe(CN)6的浓度及NaOH的浓度)和衍生反应条件.  相似文献   

4.
微流控芯片在生物化学分析中的应用   总被引:2,自引:0,他引:2  
在介绍微流控芯片基本特征的基础上,阐述了微流控芯片的独特优势,并从5个方面探讨了微流控芯片在生物化学分析中的应用。  相似文献   

5.
本文简单总结了光学检测法、电化学检测法和质谱检测法三种微流控芯片检测技术,并介绍了近几年微流控芯片检测技术的研究进展。  相似文献   

6.
对PDMS微流控芯片的制作流程、封装方法和结构特征进行了探讨,并提出了相应的解决方案。  相似文献   

7.
8.
 单细胞捕获是单细胞水平研究的前提和重要组成部分。微流控芯片通常具有与细胞尺寸相当的微通道结构,并能操控纳升至皮升级的极小体积流体,非常适用于高通量的单细胞捕获,加上微流控芯片能够将其他多种操作单元集成在一起,为单细胞分析提供了一种效率高、消耗低的研究平台。概述并对比了多种涉及流体力学、光、电、磁、声等领域的微流控单细胞捕获技术的原理和应用,展望了其未来的研究方向。  相似文献   

9.
器官微流控芯片技术通过模拟人体器官内环境来实现接近体内的体外细胞培养.基于微流控芯片器官模型的发展,构建多器官芯片整合的微流控系统为研究器官之间物质(如药物和外源性污染物)的代谢作用提供了崭新的平台.本文从不同的多细胞共培养系统角度介绍了构建多器官微流控芯片模型以及在预测和评估药物代谢及其对人体毒性测试等领域的应用,并对多器官微流控芯片技术的发展进行总结和展望.  相似文献   

10.
对湿法刻蚀和键合两个芯片制作关键步骤进行了研究和优化. 首先比较了两种刻蚀配方的效果,并对刻蚀时间和刻蚀过程中的振荡方向等条件进行了考察,对键合预处理方法做了进一步改进. 通过对常温键合和高温键合方法比较,证明高温键合才能保证芯片的使用寿命. 最后将所制得的芯片成功地应用于非变性蛋白质的二维芯片电泳分离. 实验结果表明,通过对芯片制作方法的改进,不仅获得了良好的蛋白分离效果,而且芯片制作方法更为简便、成本低、制作成功率提高.   相似文献   

11.
提出一种采用微流控芯片进行微量液体表面张力系数测量的新方法,并对其制作工艺流程进行研究.以聚碳酸酯核孔膜为模,利用毛细作用力使聚二甲基硅氧烷预聚物充满膜孔.固化后与微腔室键合,注入有机溶剂溶模释放出微柱阵列.位于液气分界面处的微柱顶端由于蒸发作用打破表面张力平衡引起微柱发生弯曲形变,通过对微柱形变图像处理,计算得出表面张力系数.实验结果表明该测量方法有效,测量精度达到nN/μm.  相似文献   

12.
开发基于静电场力和集成微电极的微液滴操控技术以实现单细胞的分离.结合微流控技术的发展,设计并制作了以有机聚合物PDMS( polydinethylsiloxane)为材料的具有流聚焦结构的芯片,利用流聚焦结构的芯片,通过改变分散相和连续相的流速,制备包裹着悬浮癌细胞( HCT116)的海藻酸钠凝胶溶液微液滴,并对其包裹细胞数目进行统计分析,其中包裹单细胞的微液滴少于总液滴数的10%.受到液滴自带电现象的启发,通过集成微电极到微流控芯片中,利用电压脉冲产生静电场力,实现了单颗单细胞微液滴的电分离和富集.  相似文献   

13.
微流控芯片上油液磨粒电容检测   总被引:1,自引:0,他引:1  
报道一种可用来检测和计数油液中磨粒个数的微流控芯片实验室装置(microfluidic lab-on-chip).使用直径为25μm铜丝作为电极,在PDMS徼流控芯片上加工获得三维电容传感器,油液样品在微流控芯片上由注射泵驱动通过传感器.金属磨粒与油液介电常数不同,每一个通过电容传感器的磨粒均会产生电容脉冲信号,脉冲信号幅值反映了磨粒大小,而脉冲个数即为磨粒数量,实现了最小粒径为8 μm的铝磨粒的检测和计数.该油液磨粒检测装置具有结构简单、成本低、检测精度高等优点,有望应用于远洋船舶的油液离线分析.  相似文献   

14.
发明了一种基于尺寸差异的单细胞全自动操控微流控芯片装置,可全自动检测细胞的大小,并对目标细胞进行全自动的电动操控。本装置主要由微流控芯片、差分放大器、继电器、数据采集卡以及计算机等组成。当细胞通过微流控芯片的电阻脉冲检测(RPS)的检测区时,会产生一个一定幅值的脉冲信号,计算机会根据设定的信号幅值自动识别出目标细胞,并控制继电器的通断电,继电器通电后,继电器所在通道内会产生电渗流,从而将目标细胞输运至该收集通道。系统具有全自动操控和分选精度高等突出优点,非常适合于操控样品中少量的目标细胞,如循环肿瘤细胞等。  相似文献   

15.
在微流控芯片中,利用磁场力操控技术实现磁珠的有效捕获在生物检测和生化分离等方面应用广泛,其在微尺度下的运动特性与磁场力和黏滞阻力的关系显得尤为重要。根据磁珠在微通道中的受力和运动方程,建立磁场和流场共同作用下磁珠的二维动力学数值模型,对三种磁场分布下磁珠的运动特性以及不同入口速度和磁场强度对磁珠捕获率的影响进行数值仿真。研究表明:磁体高宽比(h/w)越大,磁体内部的磁通密度越大且分布越均匀。当磁体高宽比从0. 5增至6时,极性相同磁体的捕获率范围为26. 7%~100%;极性相反和单磁体的磁珠捕获率最大值分别为63. 3%和53. 3%。双磁体的磁化方向对捕获率的影响为:h/w 2时,极性相反的磁珠捕获率较大;反之则小于极性相同的捕获率。通过仿真计算,入口流速介于1 mm/s~2 cm/s时,磁珠捕获率随流速的增加而减小。结果可用于实验指导流体流速进而优化磁珠使用量;并对微流控芯片的设计具有理论指导意义。  相似文献   

16.
本文就实验室微流控玻璃芯片湿法刻蚀加工工艺进行了研究,并对加工后芯片表面的生物相容性进行了评估.结果该工艺展宽100 μm,H2SO4处理后的基质生物相容性更好.所以在涉及具体的操作前,有必要进行相应的清洗以及包被处理,以便后续实验顺利开展.对于微流控芯片相关实验具有借鉴与指导意义.  相似文献   

17.
在介绍微流控芯片基本特征的基础上,阐述了微流控芯片的独特优势,并从5个方面探讨了微流控芯片在生物化学分析中的应用.  相似文献   

18.
细胞共培养技术一般用于研究细胞与细胞间的通讯机制,对揭示多细胞生物生理和病理过程具有重要意义.基于微流控芯片的细胞共培养技术能够模拟原生微环境以进行复杂的代谢和调控,为研究细胞与细胞间通讯提供了新的共培养技术平台,已经广泛应用于肿瘤转移及分析、抗癌药物筛选、药物吸收和药物代谢等领域.本文从微流控芯片上细胞共培养系统的设计、共培养系统上的检测以及模型的应用方面进行了总结和展望.  相似文献   

19.
微流控芯片上的细胞培养技术是构建一个整体化的片上细胞分析实验室的基础。针对芯片上细胞培养存活率低、容易污染等问题,该文提出了一套polydimethylsiloxane(PDMS)-玻璃微流控芯片的制备、处理方法及片上细胞培养的操作流程,并讨论了影响微管道细胞培养的因素,包括准备细胞悬液、避免气泡、芯片表面处理和培养液中的血清浓度等。应用这套方法,在微流控芯片上成功培养了多种哺乳动物细胞。  相似文献   

20.
提出一种优化的PDMS(聚二甲基硅氧烷)-PDMS键合技术,对PDMS基片与PDMS盖片使用不同的预聚物和固化剂配比进行键合.设置了按不同比例键合、氧气等离子体表面处理键合及涂覆液态PDMS键合这三种方法的对比实验,并将其应用于微流控芯片的封装测试.测试结果表明,不同比例键合后的芯片键合强度适宜,可重复利用,高效节能.键合参数:基片和盖片所用预聚体、固化剂质量比分别为10:1和15:1;盖片的固化温度75℃,固化时间40 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号