首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
对四阶抛物型方程构造了一族含参数高精度三层差分格式 .当参数满足一定的条件时 ,差分格式稳定 ,局部截断误差阶数最高可达 O(τ2 h6) .最后 ,用数值例子说明对稳定性所作的分析是正确的 .  相似文献   

2.
解四阶抛物型方程的绝对稳定高精度差分格式   总被引:16,自引:0,他引:16  
对四阶抛物理方程U1+Uxxx=0构造一族含双参数的三层差分格式,当参数a=1/2,β=0时得到双层格式,这些格式对任意非负参数均色对稳定的,共截断误差为O(Δt^2+Δx^6),且可用追赶法求解。  相似文献   

3.
对四阶抛物型方程ut+4ux4=0构造了一个新的三层显式高精度差分格式 ,其稳定性条件和局部截断误差阶分别为r =τ/h4<1 / 8和O(τ2 +h6) ,数值例子表明该格式是有效的 ,理论分析是正确的 .  相似文献   

4.
解四阶抛物型方程高精度恒稳的隐式格式   总被引:1,自引:1,他引:1  
对四阶抛物型方程ut+uxxxx=0构造了一类三层隐式差分格式,它们含有非负参数α1,α2和α3,其局部截断误差至少是O(Δt2+Δt6).在条件α1≥α3≥0,0≤α2≤及α1+α2+α3=1之下,该格式绝对稳定且可用追赶法求解.  相似文献   

5.
本文对四阶抛物型方程ρ↓u/ρ↓t ρ↓^4u/ρ↓x^4=0构造了一族含参数三层隐式差分格式,当参数满足一定的条件时,差分格式绝对稳定,局部截断误差阶数最高可达O(τ^2 h^6)。最后用数值例子说明对稳定性所作的分析是正确的。  相似文献   

6.
对任意常数a>0的四阶抛物型方程,构造含参数的高精度两层差分格式.当参数满足一定的条件时,局部截断误差阶最高可达到O(τ2 +h6),并且是绝对稳定的.特殊情况下,则为一个条件稳定的两层显格式.数值例子表明,稳定性分析是正确的.  相似文献   

7.
对四阶抛物型方程ut+uxxxx=0,构造一个新的三层显式差分格式,其稳定性条件和局部截断误差阶分别为r=τ/h4≤1/8和O(2τ+h6),其结果优于其他四阶抛物型方程的结果.数值例子表明,理论分析是正确的,该格式是有效的.  相似文献   

8.
利用加耗散项的方法,提出解四阶抛物型方程的若干新的差分格式,研究它们的局部截断误差阶及稳定性.数值例子表明,格式是有效的.  相似文献   

9.
解四阶抛物型方程的高精度显式差分格式   总被引:5,自引:1,他引:5  
提出解四阶抛物型方程u1+uxxxx=0的一个三层显式差分格式,其稳定性条件和局部截断误差分别为r=Δt/Δx^4〈1/8和O。  相似文献   

10.
对四阶抛物型方程 u t 2 u x4=0构造出一族截断误差阶为 O((Δt) 2 (Δx) 6)的三层隐式差分格式 .证明它是绝对稳定的 ,且可用追赶法求解 .数值例子表明 ,文中所提出的格式是有效的 ,理论分析与实际计算相吻合 .  相似文献   

11.
对抛物型方程,构造一族含双参数的三层高精度隐式差分格式。在特殊情况下,当参数α1/2和β=0时,得到一个两层格式。同时,证明该放格式对任意非负参数都是绝对稳定的,并且其截断误差阶为O((Δt)^2 (Δx)^6).数值例子表明,该族格式是有效的,且理论分析与实际计算相吻合。  相似文献   

12.
对二阶抛物型方程构造了一含单参数高精度两层差分格式.当参数满足一定的条件时,差分格式绝对稳定.局部截断误差阶数最高可达O(τ^2+h^4).数值例子说明对稳定性所作的分析是正确的.  相似文献   

13.
对二阶抛物型方程ut=uxx,构造了一族新的三层隐式差分格式(在特殊情况下是两层),它们含有非负参数a1,a2和a3,其截断误差至少可达O(△t)^2+(△x)^4),对三层格式,在条件a1≥a2≥0,a2≤1/2及a1+a2+a3=1之下绝对稳定,特别地,在条件a1=0,a2=a3或a1=a2,a3=0之下成为两层不含参数的隐式格式,且也是绝对稳定的。这些格式均可用追赶法求解,在该格式中,选取适  相似文献   

14.
对二阶抛物型方程构造了一族含参数高精度三层差分格式.当参数满足一定的条件时,差分格式绝对稳定,其局部截断误差阶数最高可达O(τ2+h4).适当地调节参数,可以得到一个七点显式差分格式和一个两层六点隐格式.数值例子表明,对稳定性所作的分析是正确的.  相似文献   

15.
建立了解二维抛物型方程的一族含参数的绝对稳定的高精度的差分格式,进而,在特殊情况(θ=0,r=1/6)下,得到显式差分格式ω^n+1=(1+1/36□+1/9◇)ω^n,这些格式对任意选取的参数θ≤1/6都是绝对稳定的。且当0≤θ≤min(1/6,1/2-1/12r)时,其收敛阶为O((Δt)^2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号