首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
Gill BC  Lyons TW  Young SA  Kump LR  Knoll AH  Saltzman MR 《Nature》2011,469(7328):80-83
Widespread anoxia in the ocean is frequently invoked as a primary driver of mass extinction as well as a long-term inhibitor of evolutionary radiation on early Earth. In recent biogeochemical studies it has been hypothesized that oxygen deficiency was widespread in subsurface water masses of later Cambrian oceans, possibly influencing evolutionary events during this time. Physical evidence of widespread anoxia in Cambrian oceans has remained elusive and thus its potential relationship to the palaeontological record remains largely unexplored. Here we present sulphur isotope records from six globally distributed stratigraphic sections of later Cambrian marine rocks (about 499 million years old). We find a positive sulphur isotope excursion in phase with the Steptoean Positive Carbon Isotope Excursion (SPICE), a large and rapid excursion in the marine carbon isotope record, which is thought to be indicative of a global carbon cycle perturbation. Numerical box modelling of the paired carbon sulphur isotope data indicates that these isotope shifts reflect transient increases in the burial of organic carbon and pyrite sulphur in sediments deposited under large-scale anoxic and sulphidic (euxinic) conditions. Independently, molybdenum abundances in a coeval black shale point convincingly to the transient spread of anoxia. These results identify the SPICE interval as the best characterized ocean anoxic event in the pre-Mesozoic ocean and an extreme example of oxygen deficiency in the later Cambrian ocean. Thus, a redox structure similar to those in Proterozoic oceans may have persisted or returned in the oceans of the early Phanerozoic eon. Indeed, the environmental challenges presented by widespread anoxia may have been a prevalent if not dominant influence on animal evolution in Cambrian oceans.  相似文献   

2.
Wortmann UG  Chernyavsky BM 《Nature》2007,446(7136):654-656
The global carbon and sulphur cycles are central to our understanding of the Earth's history, because changes in the partitioning between the reduced and oxidized reservoirs of these elements are the primary control on atmospheric oxygen concentrations. In modern marine sediments, the burial rates of reduced carbon and sulphur are positively coupled, but high-resolution isotope records indicate that these rates were inversely related during the Early Cretaceous period. This inverse relationship is difficult to reconcile with our understanding of the processes that control organic matter remineralization and pyrite burial. Here we show that the inverse correlation can be explained by the deposition of evaporites during the opening of the South Atlantic Ocean basin. Evaporite deposition can alter the chemical composition of sea water, which can in turn affect the ability of sulphate-reducing bacteria to remineralize organic matter and mediate pyrite burial. We use a reaction-transport model to quantify these effects, and the resulting changes in the burial rates of carbon and sulphur, during the Early Cretaceous period. Our results indicate that deposition of the South Atlantic evaporites removed enough sulphate from the ocean temporarily to reduce biologically mediated pyrite burial and organic matter remineralization by up to fifty per cent, thus explaining the inverse relationship between the burial rates of reduced carbon and sulphur during this interval. Furthermore, our findings suggest that the effect of changing seawater sulphate concentrations on the marine subsurface biosphere may be the key to understanding other large-scale perturbations of the global carbon and sulphur cycles.  相似文献   

3.
McElwain JC  Wade-Murphy J  Hesselbo SP 《Nature》2005,435(7041):479-482
The marine sedimentary record exhibits evidence for episodes of enhanced organic carbon burial known as 'oceanic anoxic events' (OAEs). They are characterized by carbon-isotope excursions in marine and terrestrial reservoirs and mass extinction of marine faunas. Causal mechanisms for the enhancement of organic carbon burial during OAEs are still debated, but it is thought that such events should draw down significant quantities of atmospheric carbon dioxide. In the case of the Toarcian OAE (approximately 183 million years ago), a short-lived negative carbon-isotope excursion in oceanic and terrestrial reservoirs has been interpreted to indicate raised atmospheric carbon dioxide caused by oxidation of methane catastrophically released from either marine gas hydrates or magma-intruded organic-rich rocks. Here we test these two leading hypotheses for a negative carbon isotopic excursion marking the initiation of the Toarcian OAE using a high-resolution atmospheric carbon dioxide record obtained from fossil leaf stomatal frequency. We find that coincident with the negative carbon-isotope excursion carbon dioxide is first drawn down by 350 +/- 100 p.p.m.v. and then abruptly elevated by 1,200 +/- 400 p.p.m.v, and infer a global cooling and greenhouse warming of 2.5 +/- 0.1 degrees C and 6.5 +/- 1 degrees C, respectively. The pattern and magnitude of carbon dioxide change are difficult to reconcile with catastrophic input of isotopically light methane from hydrates as the cause of the negative isotopic signal. Our carbon dioxide record better supports a magma-intrusion hypothesis, and suggests that injection of isotopically light carbon from the release of thermogenic methane occurred owing to the intrusion of Gondwana coals by Toarcian-aged Karoo-Ferrar dolerites.  相似文献   

4.
大洋缺氧事件的碳稳定同位素响应   总被引:3,自引:0,他引:3  
从碳稳定同位素组成及其分馏机理出发 ,系统探讨了大洋缺氧事件与海相碳酸盐和有机碳稳定同位素分馏之间的关系。缺氧事件期间 ,由于生物大批死亡和快速埋藏 ,其分解消耗海水中大量的溶解氧 ,引起大洋水体缺氧 ,富含 1 2 C的有机质从而得以大量保存 ;相应地大气和海水中富 1 3 C,同期海相碳酸盐岩碳同位素 δ值 (δ1 3C)正偏。在世界各地缺氧事件层内 ,无一例外地碳酸盐岩碳稳定同位素出现了不同程度的正偏 ,Cenomanian- Turonian 界线偏幅达~2‰。海相碳酸盐与有机质碳稳定同位素变化不仅可以提供地质历史中有机碳埋藏量的记录。研究全球碳循环变化 ,还可能追溯有机碳风化和埋藏速率的变化 ,定性地恢复大气 p CO2 变化。  相似文献   

5.
Johnston DT  Macdonald FA  Gill BC  Hoffman PF  Schrag DP 《Nature》2012,483(7389):320-323
Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10-100 million years) characterized by δ(13)C in carbonate (δ(13)C(carb)) enriched to more than +5 per mil. Classically, δ(13)C(carb) is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments, which can be linked to oxygen accumulation through the stoichiometry of primary production. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of δ(13)C(carb) and δ(13)C in organic carbon (δ(13)C(org)) will covary, offset by the fractionation imparted by primary production. The documentation of several Neoproterozoic δ(13)C(carb) excursions that are decoupled from δ(13)C(org), however, indicates that other mechanisms may account for these excursions. Here we present δ(13)C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple δ(13)C(carb) excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret δ(13)C(carb) anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of models linking drastic isotope excursions to deep ocean oxygenation and the opening of environments capable of supporting animals.  相似文献   

6.
Bains S  Norris RD  Corfield RM  Faul KL 《Nature》2000,407(6801):171-174
The onset of the Palaeocene/Eocene thermal maximum (about 55 Myr ago) was marked by global surface temperatures warming by 5-7 degrees C over approximately 30,000 yr (ref. 1), probably because of enhanced mantle outgassing and the pulsed release of approximately 1,500 gigatonnes of methane carbon from decomposing gas-hydrate reservoirs. The aftermath of this rapid, intense and global warming event may be the best example in the geological record of the response of the Earth to high atmospheric carbon dioxide concentrations and high temperatures. This response has been suggested to include an intensified flux of organic carbon from the ocean surface to the deep ocean and its subsequent burial through biogeochemical feedback mechanisms. Here we present firm evidence for this view from two ocean drilling cores, which record the largest accumulation rates of biogenic barium--indicative of export palaeoproductivity--at times of maximum global temperatures and peak excursion values of delta13C. The unusually rapid return of delta13C to values similar to those before the methane release and the apparent coupling of the accumulation rates of biogenic barium to temperature, suggests that the enhanced deposition of organic matter to the deep sea may have efficiently cooled this greenhouse climate by the rapid removal of excess carbon dioxide from the atmosphere.  相似文献   

7.
Wilson PA  Norris RD 《Nature》2001,412(6845):425-429
The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures, repeated reef-drowning in the tropics and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean 'stagnation' being invoked as the cause of ocean anoxia. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3-5 degrees C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the 'Breistroffer' event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.  相似文献   

8.
Flushing submarine canyons   总被引:3,自引:0,他引:3  
Canals M  Puig P  de Madron XD  Heussner S  Palanques A  Fabres J 《Nature》2006,444(7117):354-357
The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.  相似文献   

9.
Galy V  France-Lanord C  Beyssac O  Faure P  Kudrass H  Palhol F 《Nature》2007,450(7168):407-410
Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales.  相似文献   

10.
为研究下Kellwasser事件的生物地层及化学地层特征, 对贵州拉也剖面进行细致的牙形石生物地层学和高分辨率化学地层学研究。结果表明, 剖面底部无机碳同位素及有机碳同位素有显著正向偏移, 样品LY-8代表的层位为下Kellwasser事件的界线。Kellwasser事件碳同位素变化的主要原因是有机碳埋藏量的增加, 可能是由初级生产力增加和缺氧环境共同造成的。  相似文献   

11.
The Palaeocene/Eocene thermal maximum represents a period of rapid, extreme global warming 55 million years ago, superimposed on an already warm world. This warming is associated with a severe shoaling of the ocean calcite compensation depth and a >2.5 per mil negative carbon isotope excursion in marine and soil carbonates. Together these observations indicate a massive release of 13C-depleted carbon and greenhouse-gas-induced warming. Recently, sediments were recovered from the central Arctic Ocean, providing the first opportunity to evaluate the environmental response at the North Pole at this time. Here we present stable hydrogen and carbon isotope measurements of terrestrial-plant- and aquatic-derived n-alkanes that record changes in hydrology, including surface water salinity and precipitation, and the global carbon cycle. Hydrogen isotope records are interpreted as documenting decreased rainout during moisture transport from lower latitudes and increased moisture delivery to the Arctic at the onset of the Palaeocene/Eocene thermal maximum, consistent with predictions of poleward storm track migrations during global warming. The terrestrial-plant carbon isotope excursion (about -4.5 to -6 per mil) is substantially larger than those of marine carbonates. Previously, this offset was explained by the physiological response of plants to increases in surface humidity. But this mechanism is not an effective explanation in this wet Arctic setting, leading us to hypothesize that the true magnitude of the excursion--and associated carbon input--was greater than originally surmised. Greater carbon release and strong hydrological cycle feedbacks may help explain the maintenance of this unprecedented warmth.  相似文献   

12.
Erbacher J  Huber BT  Norris RD  Markey M 《Nature》2001,409(6818):325-327
Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.  相似文献   

13.
Freeman KH  Hayes JM  Trendel JM  Albrecht P 《Nature》1990,343(6255):254-256
The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.  相似文献   

14.
Hedges JI  Baldock JA  Gélinas Y  Lee C  Peterson M  Wakeham SG 《Nature》2001,409(6822):801-804
The sinking of particulate organic matter from ocean surface waters transports carbon to the ocean interior, where almost all is then recycled. The unrecycled fraction of this organic matter can become buried in ocean sediments, thus sequestering carbon and so influencing atmospheric carbon dioxide concentrations. The processes controlling the extensive biodegradation of sinking particles remain unclear, partly because of the difficulty in resolving the composition of the residual organic matter at depth with existing chromatographic techniques. Here, using solid-state 13C NMR spectroscopy, we characterize the chemical structure of organic carbon in both surface plankton and sinking particulate matter from the Pacific Ocean and the Arabian Sea. We found that minimal changes occur in bulk organic composition, despite extensive (>98%) biodegradation, and that amino-acid-like material predominates throughout the water column in both regions. The compositional similarity between phytoplankton biomass and the small remnant of organic matter reaching the ocean interior indicates that the formation of unusual biochemicals, either by chemical recombination or microbial biosynthesis, is not the main process controlling the preservation of particulate organic carbon within the water column at these two sites. We suggest instead that organic matter might be protected from degradation by the inorganic matrix of sinking particles.  相似文献   

15.
The evolution of the marine phosphate reservoir   总被引:3,自引:0,他引:3  
Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ~750 to ~635?Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.  相似文献   

16.
In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast, examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in 12C versus 13C (refs 1,2,5,6). Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that--as has been suggested for the Late Palaeocene thermal maximum, some 55 million years ago--the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments.  相似文献   

17.
The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times, causing a measurable reduction in seawater pH and carbonate saturation. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 microatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today's ocean. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.  相似文献   

18.
Reburial of fossil organic carbon in marine sediments   总被引:4,自引:0,他引:4  
Dickens AF  Gélinas Y  Masiello CA  Wakeham S  Hedges JI 《Nature》2004,427(6972):336-339
Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.  相似文献   

19.
Iron formations are chemical sedimentary rocks comprising layers of iron-rich and silica-rich minerals whose deposition requires anoxic and iron-rich (ferruginous) sea water. Their demise after the rise in atmospheric oxygen by 2.32?billion years (Gyr) ago has been attributed to the removal of dissolved iron through progressive oxidation or sulphidation of the deep ocean. Therefore, a sudden return of voluminous iron formations nearly 500?million years later poses an apparent conundrum. Most late Palaeoproterozoic iron formations are about 1.88?Gyr old and occur in the Superior region of North America. Major iron formations are also preserved in Australia, but these were apparently deposited after the transition to a sulphidic ocean at 1.84?Gyr ago that should have terminated iron formation deposition, implying that they reflect local marine conditions. Here we date zircons in tuff layers to show that iron formations in the Frere Formation of Western Australia are about 1.88?Gyr old, indicating that the deposition of iron formations from two disparate cratons was coeval and probably reflects global ocean chemistry. The sudden reappearance of major iron formations at 1.88?Gyr ago--contemporaneous with peaks in global mafic-ultramafic magmatism, juvenile continental and oceanic crust formation, mantle depletion and volcanogenic massive sulphide formation--suggests deposition of iron formations as a consequence of major mantle activity and rapid crustal growth. Our findings support the idea that enhanced submarine volcanism and hydrothermal activity linked to a peak in mantle melting released large volumes of ferrous iron and other reductants that overwhelmed the sulphate and oxygen reservoirs of the ocean, decoupling atmospheric and seawater redox states, and causing the return of widespread ferruginous conditions. Iron formations formed on clastic-starved coastal shelves where dissolved iron upwelled and mixed with oxygenated surface water. The disappearance of iron formations after this event may reflect waning mafic-ultramafic magmatism and a diminished flux of hydrothermal iron relative to seawater oxidants.  相似文献   

20.
Profound geotectonic, climatic and biological changes occur during the terminal Neoproterozoic and its transition into the early Cambrian. These are reflected in temporal variations of the chemical and isotopic composition of seawater. We are studying a sequence of sedimentary rocks at the Shatan section, northern Yangtze Platform, Sichuan Province of China. This succession comprises, in ascending stratigraphic order, predominantly calcareous sediments of the Sinian upper Dengying Formation and black shales of the lower Cambrian Guojiaba Formation (time equivalent of Niutitang Fm.). Paleoenvironmental setting represents shallow-water shelf deposits. The objective of our study is to provide temporal records for the isotopic compositions of organic and carbonate carbon throughout this time interval. Organic carbon isotope values display a range between -35.8‰ and -30.1‰ with clear stratigraphic variations. Carbonate carbon isotope data vary between -3.5‰ and +0.5‰. These secular variations are interpreted to reflect perturbations of the global carbon cycle, specifically changes in the fractional burial of organic carbon. However, local conditions have further affected the isotopic signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号