首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M M Barr  P W Sternberg 《Nature》1999,401(6751):386-389
The stereotyped mating behaviour of the Caenorhabditis elegans male is made up of several substeps: response, backing, turning, vulva location, spicule insertion and sperm transfer. The complexity of this behaviour is reflected in the sexually dimorphic anatomy and nervous system. Behavioural functions have been assigned to most of the male-specific sensory neurons by means of cell ablations; for example, the hook sensory neurons HOA and HOB are specifically required for vulva location. We have investigated how sensory perception of the hermaphrodite by the C. elegans male controls mating behaviours. Here we identify a gene, lov-1 (for location of vulva), that is required for two male sensory behaviours: response and vulva location. lov-1 encodes a putative membrane protein with a mucin-like, serine-threonine-rich amino terminus followed by two blocks of homology to human polycystins, products of the autosomal dominant polycystic kidney-disease loci PKD1 and PKD2. LOV-1 is the closest C. elegans homologue of PKD1. lov-1 is expressed in adult males in sensory neurons of the rays, hook and head, which mediate response, vulva location, and potentially chemotaxis to hermaphrodites, respectively. PKD-2, the C. elegans homologue of PKD2, is localized to the same neurons as LOV-1, suggesting that they function in the same pathway.  相似文献   

2.
Chang HC  Paek J  Kim DH 《Nature》2011,480(7378):525-529
Heritable variation in behavioural traits generally has a complex genetic basis, and thus naturally occurring polymorphisms that influence behaviour have been defined only in rare instances. The isolation of wild strains of Caenorhabditis elegans has facilitated the study of natural genetic variation in this species and provided insights into its diverse microbial ecology. C. elegans responds to bacterial infection with conserved innate immune responses and, although lacking the immunological memory of vertebrate adaptive immunity, shows an aversive learning response to pathogenic bacteria. Here, we report the molecular characterization of naturally occurring coding polymorphisms in a C. elegans gene encoding a conserved HECT domain-containing E3 ubiquitin ligase, HECW-1. We show that two distinct polymorphisms in neighbouring residues of HECW-1 each affect C. elegans behavioural avoidance of a lawn of Pseudomonas aeruginosa. Neuron-specific rescue and ablation experiments and genetic interaction analysis indicate that HECW-1 functions in a pair of sensory neurons to inhibit P. aeruginosa lawn avoidance behaviour through inhibition of the neuropeptide receptor NPR-1 (ref. 10), which we have previously shown promotes P. aeruginosa lawn avoidance behaviour. Our data establish a molecular basis for natural variation in a C. elegans behaviour that may undergo adaptive changes in response to microbial pathogens.  相似文献   

3.
In many organisms, population-density sensing and sexual attraction rely on small-molecule-based signalling systems. In the nematode Caenorhabditis elegans, population density is monitored through specific glycosides of the dideoxysugar ascarylose (the 'ascarosides') that promote entry into an alternative larval stage, the non-feeding and highly persistent dauer stage. In addition, adult C. elegans males are attracted to hermaphrodites by a previously unidentified small-molecule signal. Here we show, by means of combinatorial activity-guided fractionation of the C. elegans metabolome, that the mating signal consists of a synergistic blend of three dauer-inducing ascarosides, which we call ascr#2, ascr#3 and ascr#4. This blend of ascarosides acts as a potent male attractant at very low concentrations, whereas at the higher concentrations required for dauer formation the compounds no longer attract males and instead deter hermaphrodites. The ascarosides ascr#2 and ascr#3 carry different, but overlapping, information, as ascr#3 is more potent as a male attractant than ascr#2, whereas ascr#2 is slightly more potent than ascr#3 in promoting dauer formation. We demonstrate that ascr#2, ascr#3 and ascr#4 are strongly synergistic, and that two types of neuron, the amphid single-ciliated sensory neuron type K (ASK) and the male-specific cephalic companion neuron (CEM), are required for male attraction by ascr#3. On the basis of these results, male attraction and dauer formation in C. elegans appear as alternative behavioural responses to a common set of signalling molecules. The ascaroside signalling system thus connects reproductive and developmental pathways and represents a unique example of structure- and concentration-dependent differential activity of signalling molecules.  相似文献   

4.
Polyandrous females avoid costs of inbreeding.   总被引:27,自引:0,他引:27  
Tom Tregenza  Nina Wedell 《Nature》2002,415(6867):71-73
Why do females typically mate with more than one male? Female mating patterns have broad implications for sexual selection, speciation and conflicts of interest between the sexes, and yet they are poorly understood. Matings inevitably have costs, and for females, the benefits of taking more than one mate are rarely obvious. One possible explanation is that females gain benefits because they can avoid using sperm from genetically incompatible males, or invest less in the offspring of such males. It has been shown that mating with more than one male can increase offspring viability, but we present the first clear demonstration that this occurs because females with several mates avoid the negative effects of genetic incompatibility. We show that in crickets, the eggs of females that mate only with siblings have decreased hatching success. However, if females mate with both a sibling and a non-sibling they avoid altogether the low egg viability associated with sibling matings. If similar effects occur in other species, inbreeding avoidance may be important in understanding the prevalence of multiple mating.  相似文献   

5.
Production of sperm reduces nematode lifespan.   总被引:7,自引:0,他引:7  
W A Van Voorhies 《Nature》1992,360(6403):456-458
Sex and death are two fundamental but poorly understood aspects of life. They are often thought to be linked because reproduction requires the diversion of limited resources from somatic growth and maintenance. This diversion of resources in mated animals, often called a cost of reproduction, is usually expressed as a reduction of lifespan in mated animals, although some debate exists on the best way to measure this cost. I report here that in the soil nematode, Caenorhabditis elegans, sex significantly decreases male lifespan without reducing hermaphrodite lifespan. The reduction of mated male lifespan seems to be caused by additional sperm production and not by the physical activity of mating. This conclusion is supported by observations that a mutation reducing sperm production increased mean lifespan by about 65% in both mated males and hermaphrodites. This suggests that spermatogenesis, rather than oogenesis or the physical act of mating, is a major factor reducing lifespan in C. elegans. This contradicts the traditional biological assumption that large oocytes are much costlier to produce than small sperm.  相似文献   

6.
C P Hunter  W B Wood 《Nature》1992,355(6360):551-555
Sex in Caenorhabditis elegans is determined by a regulatory cascade of seven interacting autosomal genes controlled by three X-linked genes in response to the X chromosome-to-autosome (X/A) ratio. XX animals (high X/A) develop as self-fertile hermaphrodites, and XO animals (low X/A) develop as males. The activity of the first gene in the sex-determining cascade, her-1, is required for male sexual development. XO her-1 loss-of-function mutants develop as self-fertile hermaphrodites, whereas XX her-1 gain-of-function mutants develop as masculinized intersexes. By genetic mosaic analysis using a fused free duplication linking her-1 to a cell-autonomous marker gene, we show here that her-1 expression in a sexually dimorphic cell is neither necessary nor sufficient for that cell to adopt a male fate. Our results suggest that her-1 is expressed in many, possibly all, cells and that its gene product can function non-autonomously through cell interactions to determine male sexual development.  相似文献   

7.
Iyengar VK  Reeve HK  Eisner T 《Nature》2002,419(6909):830-832
Females of the arctiid moth Utetheisa ornatrix mate preferentially with larger males, receiving both direct phenotypic and indirect genetic benefits. Here we demonstrate that the female's mating preference is inherited through the father rather than the mother, indicating that the preference gene or genes lie mostly or exclusively on the Z sex chromosome, which is strictly paternally inherited by daughters. Furthermore, we show that the preferred male trait and the female preference for that trait are correlated, as females with larger fathers have a stronger preference for larger males. These findings are predicted by the protected invasion theory, which asserts that male homogametic sex chromosome systems (ZZ/ZW) found in lepidopterans and birds promote the evolution of exaggerated male traits through sexual selection. Specifically, the theory predicts that, because female preference alleles arising on the Z chromosome are transmitted to all sons that have the father's attractive trait rather than to only a fraction of the sons, such alleles will experience stronger positive selection and be less vulnerable to chance loss than would autosomal alleles.  相似文献   

8.
Sexually antagonistic genetic variation for fitness in red deer   总被引:1,自引:0,他引:1  
Evolutionary theory predicts the depletion of genetic variation in natural populations as a result of the effects of selection, but genetic variation is nevertheless abundant for many traits that are under directional or stabilizing selection. Evolutionary geneticists commonly try to explain this paradox with mechanisms that lead to a balance between mutation and selection. However, theoretical predictions of equilibrium genetic variance under mutation-selection balance are usually lower than the observed values, and the reason for this is unknown. The potential role of sexually antagonistic selection in maintaining genetic variation has received little attention in this debate, surprisingly given its potential ubiquity in dioecious organisms. At fitness-related loci, a given genotype may be selected in opposite directions in the two sexes. Such sexually antagonistic selection will reduce the otherwise-expected positive genetic correlation between male and female fitness. Both theory and experimental data suggest that males and females of the same species may have divergent genetic optima, but supporting data from wild populations are still scarce. Here we present evidence for sexually antagonistic fitness variation in a natural population, using data from a long-term study of red deer (Cervus elaphus). We show that male red deer with relatively high fitness fathered, on average, daughters with relatively low fitness. This was due to a negative genetic correlation between estimates of fitness in males and females. In particular, we show that selection favours males that carry low breeding values for female fitness. Our results demonstrate that sexually antagonistic selection can lead to a trade-off between the optimal genotypes for males and females; this mechanism will have profound effects on the operation of selection and the maintenance of genetic variation in natural populations.  相似文献   

9.
Hoffman JI  Forcada J  Trathan PN  Amos W 《Nature》2007,445(7130):912-914
Much debate surrounds the exact rules that influence mating behaviour, and in particular the selective forces that explain the evolution of female preferences. A key example is the lek paradox, in which female choice is expected rapidly to become ineffective owing to loss of additive genetic variability for the preferred traits. Here we exploit a remarkable system in which female fur seals exert choice by moving across a crowded breeding colony to visit largely static males. We show that females move further to maximize the balance between male high multilocus heterozygosity and low relatedness. Such a system shows that female choice can be important even in a strongly polygynous species, and at the same time may help to resolve the lek paradox because heterozygosity has low heritability and inbreeding avoidance means there is no single 'best' male for all females.  相似文献   

10.
P Hutter  M Ashburner 《Nature》1987,327(6120):331-333
Post-mating mechanisms are central to the establishment of reproductive isolation between different, but closely related, species. Post-mating isolation mechanisms include hybrid breakdown, hybrid sterility and hybrid lethality and may, in some cases, be reinforced by pre-mating mechanisms such as ethological differentiation. In the Drosophila melanogaster species sub-group post-mating reproductive isolation is ensured by both the inviability and the sterility of hybrids. For example when D. melanogaster females are crossed to D. simulans males the hybrid progeny are normally all female; the hybrid males die as third instar larvae. The viable hybrid females are totally sterile. Little is known of the genetic basis for either hybrid sterility or hybrid inviability, although Coyne and others have begun a genetic analysis of the sterility of hybrids within this species sub-group. We have discovered a single gene difference that rescues the otherwise inviable male hybrids from the cross between D. melanogaster females and males of its three closest relatives. The study of this locus may shed light on the genetic control of both speciation and development.  相似文献   

11.
Mate choice on fallow deer leks   总被引:5,自引:0,他引:5  
Leks, on which males defend small clustered mating territories, may have evolved because of the unusual opportunities they provide for female choice of mating partners, and several studies of lek-breeding animals have demonstrated correlations between the mating success of males and their phenotype or behaviour. However, these could arise because (1) females select mates on the basis of male phenotypic traits; (2) males interfere with each other's mating attempts; or (3) females show preferences for particular mating territories, and larger or stronger males are more likely to win access to these territories. Here we report that when fallow bucks on a traditional lek were experimentally induced to change their territories, differences in the mating success of bucks persisted, whereas differences in the position of their territories relative to the centre of the lek did not. The observation that bucks rarely interfered with their neighbours' harems and females moved freely between bucks suggests that females choose their mates on the basis of male phenotype rather than territory type or location. In this population, the immediate factor affecting the movements of females between males was the size of a buck's harem.  相似文献   

12.
Negative genetic correlation between male sexual attractiveness and survival   总被引:16,自引:0,他引:16  
Brooks R 《Nature》2000,406(6791):67-70
Indirect selection of female mating preferences may result from a genetic association between male attractiveness and offspring fitness. The offspring of attractive males may have enhanced growth, fecundity, viability or attractiveness. However, the extent to which attractive males bear genes that reduce other fitness components has remained unexplored. Here I show that sexual attractiveness in male guppies (Poecilia reticulata) is heritable and genetically correlated with ornamentation. Like ornamentation, attractiveness may be substantially Y-linked. The benefit of mating with attractive males, and thus having attractive sons, is opposed by strong negative genetic correlation between attractiveness and both offspring survival and the number of sons maturing. Such correlations suggest either antagonistic pleiotropy between attractiveness and survival or linkage disequilibrium between attractive and deleterious alleles. The presence of many colour pattern genes on or near the non-recombining section of the Y chromosome may facilitate the accumulation of deleterious mutations by genetic hitchhiking. These findings show that genes enhancing sexual attractiveness may be associated with pleiotropic costs or heavy mutational loads.  相似文献   

13.
为探明褐飞虱交配次数和性选择的生殖行为特征,构建了褐飞虱生物型1和生物型Y的近交系,筛选了在不同近交系之间存在明显差异的9个SSR(Simple Sequence Repeats)分子标记用于亲子鉴定.在雌虫交配次数试验中,观察并分子鉴定到23头成功交配的雌虫,其中19头雌虫一生仅进行1次交配,4头雌虫一生进行了2次交...  相似文献   

14.
Fedorka KM  Mousseau TA 《Nature》2004,429(6987):65-67
Indirect-benefit models of sexual selection assert that females gain heritable offspring advantages through a mating bias for males of superior genetic quality. This has generally been tested by associating a simple morphological quality indicator (for example, bird tail length) with offspring viability. However, selection acts simultaneously on many characters, limiting the ability to detect significant associations, especially if the simple indicator is weakly correlated to male fitness. Furthermore, recent conceptual developments suggest that the benefits gained from such mating biases may be sex-specific because of sexually antagonistic genes that differentially influence male and female reproductive ability. A more suitable test of the indirect-benefit model would examine associations between an aggregate quality indicator (such as male mating success) and gender-specific adult fitness components, under the expectation that these components may trade off. Here, we show that a father's mating success in the cricket, Allonemobius socius, is positively genetically correlated with his son's mating success but negatively with his daughter's reproductive success. This provides empirical evidence that a female mating bias can result in sexually antagonistic offspring fitness.  相似文献   

15.
Female mimicry in garter snakes   总被引:4,自引:0,他引:4  
R T Mason  D Crews 《Nature》1985,316(6023):59-60
In many diverse taxa, males of the same species often exhibit multiple mating strategies. One well-documented alternative male reproductive pattern is 'female mimicry', whereby males assume a female-like morphology or mimic female behaviour patterns. In some species males mimic both female morphology and behaviour. We report here female mimicry in a reptile, the red-sided garter snake (Thamnophis sirtalis parietalis). This form of mimicry is unique in that it is expressed as a physiological feminization. Courting male red-sided garter snakes detect a female-specific pheromone and normally avoid courting other males. However, a small proportion of males release a pheromone that attracts other males, as though they were females. In the field, mating aggregations of 5-17 males were observed formed around these individual attractive males, which we have termed 'she-males'. In competitive mating trails, she-males mated with females significantly more often than did normal males, demonstrating not only reproductive competence but also a possible selective advantage to males with this female-like pheromone.  相似文献   

16.
Garcia CM  Ramirez E 《Nature》2005,434(7032):501-505
Conventional models explaining extreme sexual ornaments propose that these reflect male genetic quality or are arbitrary results of genetic linkage between female preference and the ornament. The chase-away model emphasizes sexual conflict: male signals attract females because they exploit receiver biases. As males gain control of mating decisions, females may experience fitness costs through suboptimal mating rates or post-copulatory exploitation. Elaboration of male signals is expected if females increase their response threshold to resist such exploitation. If ornaments target otherwise adaptive biases such as feeding responses, selection on females might eventually separate sexual and non-sexual responses to the signal. Here we show that the terminal yellow band (TYB) of several Goodeinae species evokes both feeding and sexual responses; sexual responsiveness phylogenetically pre-dates the expression of the TYB in males and is comparable across taxa, yet feeding responsiveness decreases in species with more elaborated TYBs. Displaying a TYB is costly, and thus provides an example where a trait arose as a sensory trap but has evolved into an honest signal.  相似文献   

17.
Watts PC  Buley KR  Sanderson S  Boardman W  Ciofi C  Gibson R 《Nature》2006,444(7122):1021-1022
Parthenogenesis, the production of offspring without fertilization by a male, is rare in vertebrate species, which usually reproduce after fusion of male and female gametes. Here we use genetic fingerprinting to identify parthenogenetic offspring produced by two female Komodo dragons (Varanus komodoensis) that had been kept at separate institutions and isolated from males; one of these females subsequently produced additional offspring sexually. This reproductive plasticity indicates that female Komodo dragons may switch between asexual and sexual reproduction, depending on the availability of a mate--a finding that has implications for the breeding of this threatened species in captivity. Most zoos keep only females, with males being moved between zoos for mating, but perhaps they should be kept together to avoid triggering parthenogenesis and thereby decreasing genetic diversity.  相似文献   

18.
J Collins  B Saari  P Anderson 《Nature》1987,328(6132):726-728
The genetic activity of transposable elements is tightly controlled in many species. Transposons that are relatively quiescent under certain circumstances can excise or transpose at greatly increased rates under other circumstances. For example, 'genomic shock' can activate quiescent maize transposons, 'cytotype' and tissue-specific splicing regulate Drosophila P factors, copy number controls Tn5 transposition in bacteria, and developmental timing affects the production of transposon-like intracisternal A-particles in mouse embryos. The Caenorhabditis elegans transposable element Tc1 is subject to both strain-specific and tissue-specific control. Multiple copies of Tc1 are present in the genome of all C. elegans strains collected from nature. However, these elements are genetically active in only certain isolates. For example, in C. elegans variety Bristol transposition and excision of Tc1 are undetectable, but in variety Bergerac transposition and excision are frequent. Moreover, in variety Bergerac, Tc1 is about 1,000-fold more active in somatic cells than in germ cells. We have investigated the genetic basis for the germ/soma regulation of Tc1 activity. We have isolated mutants that exhibit increased frequencies of Tc1 excision in the germ line. The frequencies of Tc1 excision in the soma are unaltered in these mutants. These mutants also exhibit high frequencies of Tc1 germ-line transposition, and this results in a mutator phenotype. Nearly all mutator-induced mutations are caused by insertion of Tc1.  相似文献   

19.
Foerster K  Delhey K  Johnsen A  Lifjeld JT  Kempenaers B 《Nature》2003,425(6959):714-717
Females in a variety of species commonly mate with multiple males, and there is evidence that they benefit by producing offspring of higher genetic quality; however, the nature of these genetic benefits is debated. Enhanced offspring survival or quality can result from intrinsic effects of paternal genes---'good genes'--or from interactions between the maternal and paternal genomes--'compatible genes'. Evidence for the latter process is accumulating: matings between relatives lead to decreased reproductive success, and the individual level of inbreeding--measured as average heterozygosity--is a strong fitness predictor. Females should thus benefit from mating with genetically dissimilar males. In many birds, social monogamy restricts mate choice, but females may circumvent this by pursuing extra-pair copulations. Here we show that female blue tits, Parus caeruleus, increase the heterozygosity of their progeny through extra-pair matings. Females thereby produce offspring of higher reproductive value, because less inbred individuals have increased survival chances, a more elaborate male secondary sexual trait (crown colour) and higher reproductive success. The cost of inbreeding may therefore be an important factor driving the evolution of female extra-pair mating.  相似文献   

20.
Kyriacou CP  Hall JC 《Nature》1984,308(5954):62-65
The courtship song in Drosophila melanogaster has two components, a low-frequency hum and a train of pulses with a species-specific interpulse interval (IPI) of 30-40 ms(1,2). The IPIs oscillate rhythmically, with periods between 50 and 60 s in wild-type males(3). When females are stimulated with artificial songs in the presence of courting but silent (wingless) males, the 'pulse song' and its oscillation can enhance mating success(4?6). If separated males and females are first simultaneously primed with invariant 34-ms IPIs, their subsequent mating success is improved(7). However, exclusive prestimulation of females leads to faster mating only when the hum component of the song is applied, not constant 34-ms IPIs(5). We have re-examined these findings by testing whether prior exposure of females to a rhythmic pulse song speeds up subsequent mating performance. We report here that it does. Furthermore, learning and memory mutations(8), expressed in the females to whom songs are being played, either 'block' or attenuate the effectiveness of acoustical priming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号