共查询到20条相似文献,搜索用时 15 毫秒
1.
尺度不变特征变换(SIFT)是一种常用的特征提取算法,但它采用固定的阈值来筛选特征点,匹配效果不是很理想.文中针对SIFT对不同图像无自适应性的缺点,提出了一种新的计算自适应阈值的方法,即将中介真值程度(MMTD)和SIFT相结合,用MMTD改进SIFT算法能够避免为了选取合适的阈值而进行大量的实验.采用MMTD改进阈值来筛选图像中的特征点,再将特征点进行图像匹配.实验结果表明,匹配点的数量比采用传统的SIFT方法增加了约两倍,说明文中所提出的基于MMTD的SIFT特征提取算法是有效的. 相似文献
2.
《阜阳师范学院学报(自然科学版)》2020,(2):77-82
针对SIFT特征描述符的特征维数高、匹配算法复杂的缺点,提出了一种基于SIFT的二进制特征描述匹配算法。该算法利用一阶中心矩来确定关键点的主方向,保证了其良好的旋转不变性和较出色的抗噪能力。提出了一种改进的特征描述符表示方法,利用区域内梯度大小关系确定二进制数值串,最后利用易于计算的汉明距离代替欧氏距离度量特征描述符之间的相似度以提升运算效率。实验结果显示,本文算法在运算效率和匹配正确率方面都优于传统SIFT。 相似文献
3.
原始SIFT算法采用不同参数的高斯核取差,是对图像空间性质的一种测量方法. 本文在光谱维度上取差,用光学系统在光谱维度上的差异作为图像空间性质的测量方法;传统SIFT方法及大量的改进方法只统计以特征点为中心的邻域范围内图像块的像素信息,文中将匹配过程分为2个步骤,首先利用邻域范围内的图像块像素信息进行粗匹配,然后选取排序后相似程度最高的4组匹配对作为基准匹配对,对特征点进行二次校验. 仿真结果表明文中的设计方式显著增加了检测到的特征点数量,有效剔除了错误匹配. 相似文献
4.
针对SIFT算法特征描述符计算复杂、时间效率较低的问题,提出了一种改进的SIFT算法,并将其应用于无人机倾斜影像匹配.算法首先利用SIFT算法进行特征点检测,基于BRISK描述符对提取的特征点进行描述生成其特征描述符,并基于Hamming距离作为特征匹配的相似性测度,在此基础上,利用比值提纯法(NNDR)进行粗匹配,最后采用RANSAC算法并结合均方根误差(RMSE)进行约束,对粗匹配结果进行筛选,剔除错误匹配点对,得到精确匹配结果.为了验证该算法的有效性,利用4组无人机影像数据进行实验并与SIFT算法和SURF算法进行比较,结果表明:算法在保证较高准确率的同时能够得到亚像素级的精度,且能够有效地提升时间效率,具有较好的稳定性. 相似文献
5.
SIFT特征匹配算法是目前特征匹配研究领域的热点,其匹配能力较强,可以处理图像间发生平移、旋转、仿射变换的匹配,对任意角度拍摄的图像也具备较稳定的特征匹配能力。实验结果表明,该算法具有较强的匹配能力和鲁棒性,是一种较好的特征匹配算法。 相似文献
6.
针对SIFT特征匹配算法在特征空间中进行历遍搜索,匹配速度慢的问题,提出一种金字塔层间匹配算法。首先,根据特征点所处金字塔层不同将特征点划分为不同的集合,其次,选择待配准图像金字塔中某一层集合,在基准图像金字塔中寻找相似层,并确定待配准图像金字塔与基准图像金字塔层之间的相似关系,最后,在相似层之间寻找匹配点。待配准图像中的选择层集合由金字塔底层到顶层,寻找相似层所用时间依次缩短。与原算法相比,该算法具有相同的旋转稳定性。将该算法与原算法分别应用实际图像配准中,结果表明:可见光图像配准中,匹配速度提高了3.2倍,正确匹配率提高了10.3%,红外图像配准中,匹配速度提高1.4倍,正确匹配率达到100%。 相似文献
7.
针对SIFT特征匹配算法在特征空间中进行历遍搜索,匹配速度慢的问题,提出一种金字塔层间匹配算法。首先,根据特征点所处金字塔层不同将特征点划分为不同的集合,其次,选择待配准图像金字塔中某一层集合,在基准图像金字塔中寻找相似层,并确定待配准图像金字塔与基准图像金字塔层之间的相似关系,最后,在相似层之间寻找匹配点。待配准图像中的选择层集合由金字塔底层到顶层,寻找相似层所用时间依次缩短。与原算法相比,该算法具有相同的旋转稳定性。将该算法与原算法分别应用实际图像配准中,结果表明:可见光图像配准中,匹配速度提高了3.2倍,正确匹配率提高了10.3%,红外图像配准中,匹配速度提高1.4倍,正确匹配率达到100%。 相似文献
8.
提出一种基于统一计算设备架构(CUDA)加速的尺度不变特征变换(SIFT)快速计算方法,用以解决SIFT特征提取计算过程耗时过长的问题.该方法充分利用图像处理单元(GPU)在并行计算、浮点计算、内存管理等方面的优势,合理分配主机端和设备端的资源及其在SIFT特征计算中所承担的角色.实验表明,与CPU架构下的SIFT特征提取算法相比,本文算法可以大幅度加快SIFT特征提取的计算速度,其加速比随着SIFT特征点数目的增加而增加,在本文实验中最大加速比可达1954. 相似文献
9.
《郑州大学学报(理学版)》2017,(3)
尺度不变特征变换(scale invariant feature transform,SIFT)算法是目前图像研究领域的热点,它具有良好的尺度、旋转、光照、噪声等不变特性.在特征提取方法上,利用SIFT算法提取虹膜纹理的特征向量,由于提取出来的虹膜特征向量是128维,占用内存空间大,因此提出用Harris角点对初始特征点进行筛选,选择高对比度的点作为最终的虹膜特征向量;在匹配方法上,使用街区距离进行虹膜图像特征匹配,进一步提高虹膜图像匹配的速度.实验结果表明,改进的算法在保持鲁棒性的同时,提高了SIFT特征匹配效率,能够为一些快速应用提供保障. 相似文献
10.
《山西师范大学学报:自然科学版》2017,(3)
针对向量夹角的近似最近邻搜索算法向量误搜索率高的问题,提出了一种基于双参考向量的SIFT特征点匹配算法——DRV算法.该算法通过两个参考向量对应的同心圆锥相切部分的交集,大幅缩小了特征向量搜索的范围.实验结果表明,与经典的SIFT算法相比较,DRV算法在获得满意匹配效果的同时,有效降低了SIFT特征点匹配的时间成本. 相似文献
11.
为解决图像匹配耗时的问题,提出一种改进的图像匹配方案.在尺度不变特性变换(SIFT)算法的基础上,以特征点邻域灰度值的差熵大小来筛选稳定特征点,减少所需描述及匹配的不稳定特征点的数量,提高算法匹配效率.同时,改进误匹配去除算法,以大幅提高误匹配去除效率.实验结果表明,与SIFT及RANSAC相结合的图像匹配方案,或相关的改进方案相比,本方案可最大程度地保存最终匹配的特征点数量,并提高特征点匹配的实时性、匹配率及正确匹配率. 相似文献
12.
针对传统特征匹配算法匹配率低的问题, 提出一种基于图像梯度信息强化的尺度不变特征转换(SIFT)特征匹配算法的改进算法. 首先通过适当的梯度算子求出梯度图; 然后以特定权值将梯度图与原图融合, 归一化后对融合图像进行高斯模糊; 最后利用传统算法进行特征提取. 实验结果表明, 改进算法的视角、 旋转不变性明显优于原算法, 对亮度变化较大或有噪声的图像匹配率也略有提升, 有效提高了SIFT特征匹配算法的准确性. 相似文献
13.
本文提出了一种基于立体视觉技术进行特征提取和匹配的算法。在立体视觉技术基础上以投射大小光斑的方法增加自由曲面的图像特征,有效的获得了图像的主要信息,建立图像之间的点映射关系。由图像相关性对匹配进行约束,选择最佳匹配点,获得象点在两个坐标系统中的三维空间数据,然后进行数据拟合得到非特征点的数据,大大提高了图像配准的效率和准确性。 相似文献
14.
针对SIFT算法得到的特征点数目太大、算法复杂耗时的问题,提出一种改进的SIFT特征提取与匹配算法并在GPU上进行了加速处理。通过分析算法的并行性,充分利用GPU多线程和存储器的优势对SIFT算法进行优化。在关键点精确定位过程中增加了第二次筛选,有效减少了特征点数量。发挥圆形具有旋转不变的优势,减少了算法的步骤同时描述符降到了64维。实验结果表明,该算法在保证匹配准确度的同时速度随图像复杂度的增强而提升,处理1600×1200图像时加速比可达2.3倍,提高了算法在实际应用中的实时性。 相似文献
15.
对尺度特征不变SIFT算法进行了研究。针对原算法中128维特征描述子在匹配过程中效率低的情况,提出64维特征描述子。该描述子增加了特征点邻域的统计范围,增强了特征点的特征信息,降低了特征描述子的维数;特征点匹配阶段,采用欧氏距离作为度量,采用基于BBF的Kd-树对特征点进行匹配,提高了匹配速率。实验表明,匹配速率提高了5%到15%,配准精度与原算法相近。 相似文献
16.
采用Harris角点检测算法进行图像特征检测.使用快速SIFT图像匹配方法进行图像匹配并计算基础矩阵,去除误匹配点后用SIFT图像匹配的结果对Harris角点进行定位,并用ZNCC算法对角点进行增量匹配.该算法有效地弥补了SIFT图像匹配算法的特征点只分布于非边缘区域的问题,相比单纯SIFT算法可获得更多的匹配点,并且算法时间增加较少. 相似文献
17.
一种改进的SIFT特征点匹配算法 总被引:1,自引:0,他引:1
提出一种改进的SIFT特征点匹配算法.以提高图像特征点匹配算法效率为目的,研究了SIFT特征点描述子基于欧氏最小距离测度的匹配算法.由于SIFT特征点检测算法检测到的特征点数量较大,且每个特征点描述子都是128维的向量,而基于欧氏最小距离测度的匹配算法要求,待匹配第一幅图像的每个特征点要和待匹配第二幅图像的所有特征点求距离,排序后寻找极值,这导致了算法效率较低.依据光学成像理论和双目视觉理论,由第一幅图像每个特征点的坐标,从行列两个方向缩小第二幅图像待匹配特征点坐标的搜索范围,在保持匹配精度的基础上,提高了算法的效率,算法速度约是原算法速度的2.7倍. 相似文献
18.
针对现有SIFT算法时间复杂度较高的问题,提出一种基于Hough变换及SIFT特征提取的图像匹配方法。首先,用Hough变换算法检测建筑物区域,以缩小检测与匹配的范围;然后,用SIFT算法在给定区域进行特征点检测与匹配;最后,提出一种两级排除错误匹配的方法,该算法对建筑物序列图像匹配具有光照强度、平移、旋转不变性。实验结果表明,该方法的匹配准确率至少高出比较方法9%。 相似文献
19.
针对传统车牌定位算法对车牌图像质量要求较高、鲁棒性较差、准确率较低等不足,提出了一种基于尺度不变特征(SIFT)特征提取的车牌定位新方法.它利用车牌中汉字字符的局部特征属性,以SIFT特征提取方法进行抽取,并用之构建特征模板库,然后把待识别车牌图像的SIFT特征与之相匹配,用RANSAC算法剔除误匹配点后,便得到仿射变换矩阵,从而实现对车牌较准确的初定位和初倾斜校正.进一步对提取的车牌区域图像二值化,用Radon变换求得倾斜角度后,可生成精确的仿射变换矩阵,并实现对车牌的精确定位和倾斜校正.实验表明:与传统算法相比,本方法不仅能够实现准确的车牌定位及倾斜校正,而且对图像亮度、污损、倾斜、尺寸变化等具有良好的适应性和鲁棒性. 相似文献
20.
复杂光照变化条件下的彩色SIFT匹配算法 总被引:1,自引:0,他引:1
为了提高复杂光照变化条件下所获取的彩色图像对的匹配效果,基于von Kries彩色变化模型,提出了一种新的彩色不变量的尺度不变特征变换(SIFT)算法.首先通过彩色空间变换获得复杂光照下的同一场景或目标的2幅或多幅图像的彩色不变量信息;然后利用SIFT算法提取彩色信息中的图像几何信息完成匹配;最后采用随机抽验一致性(RANSAC)算法消除误匹配点对,同时得到更加鲁棒和稳定的基础矩阵,以方便下一步的图像处理工作.通过理论分析和实验比较,该算法同传统的SIFT算法及其他彩色SIFT匹配算法相比,可以获得更多可靠的匹配数据以提高对图像的识别率. 相似文献