共查询到20条相似文献,搜索用时 0 毫秒
1.
要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimization, ResNetSO);然后去除冗余特征以提高融合后特征质量,并将空间注意力机制应用于特征金字塔网络,构建了基于下层特征指导的特征金字塔网络(feature pyramid network based on lower feature guidance,FPNetLFG)。在两个公开数据集上的实验结果表明:包含ResNetSO和FPNetLFG两个模块的模型应用在级联区域卷积神经网络、递归特征金字塔和可切换空洞卷积的目标检测模型中,分别可以带来0.8%和0.3%左右的F1值提升,从而说明了该方法的有效性和普遍适用性。 相似文献
2.
3.
为了改善传统脑电信号分类时间长、精度不够准确且分类难度较大的问题,利用脑电传感器(Mind Wave传感器)及Real Term软件从串口抓取数据获取脑电波TGAM数据包,并对采集的脑电信号数据进行分解计算处理,得到各个波段数据,使用基于负熵的独立分量分析的固定点算法(FastICA)提取脑电信号特征,并用深度学习分类算法对脑电信号进行分类。传统机器学习算法不能准确分类复杂的脑电信号,运用卷积神经网络(Convolutional Neural Network,CNN)提取数据进行训练,构建分类器,实现了对脑电信号更高效更准确的分类。实验结果表明,与Fisher线性判别、BP神经网络、朴素贝叶斯相比,此算法可以更准确地区分是否清醒的状态,对脑电信号分类的研究具有重大意义。 相似文献
4.
为了提升分类模型对非平衡数据的分类性能,提出一种EMWRS(expectation-maximization weighted resampling)抽样算法和WCELoss(weighted cross entropy loss function)损失函数,在数据预处理阶段采用高斯混合模型得知数据分布特点,根据其聚类结果分析每个聚类簇中样本权重,以及样本分布和对应权重对数据进行采样,降低数据集不平衡程度;再依据样本比例权重对少数类和多数类赋予不同的代价损失,构建卷积神经网络模型,提高非平衡数据集的分类准确性。构建的卷积神经网络以F1和G-mean为评价指标,在UCI(university of California irvine)公共数据集adult上与SMOTE(synthetic minority over-sampling technique)和ADASYN(adaptive synthetic sampling)等多种经典算法进行比较,结果显示在这两种评价指标中所提模型均为第一,这表明改进后的卷积神经网络模型能够很好地提高少数类分类正确率。 相似文献
5.
空间分辨率为10 m的哨兵二号影像在原始的GoogLeNet中以影像的光谱值作为输入,没有将影像中的地物视为一个整体对象,为了利用影像的面向对象特征,提出了基于多特征的Object-oriented GoogLeNet网络结构。Object-oriented GoogLeNet在原有模型的基础上,引入了面向对象的光谱特征和形状特征,充分利用了不同地物间差异的形状特征进行分类。在武汉市及其周边的无云影像制作的数据集上,Object-oriented GoogLeNet模型的分类结果总体精度在GoogLeNet基础上提升了1.773%。结果表明,引入面向对象的特征模型在哨兵二号遥感影像分类中效果更好。 相似文献
6.
7.
在分析煤矸石分拣环境特点及煤矸石视觉特点的基础上,提出改进的卷积神经网络煤矸石图像识别算法,并从损失函数、模型参数以及准确率3个方面进行分析研究。结果表明:改进后的卷积神经网络图像识别算法能有效地避免分选环境中的噪声影响;与传统的分选方法相比,具有更快的识别速度和更高的准确率,能更好地满足实际工程需要。 相似文献
8.
本文对决策树数据挖掘方法进行分析和比较,并应用该分类方法对网页文本进行分类,仿真实验结果证明决策树算法在文本分类研究领域有着广阔的应用前景. 相似文献
9.
10.
11.
12.
13.
《黑龙江大学自然科学学报》2017,(6)
颅内病变的具体类型直接影响医生所选用的医疗方式,目前颅内病变影像的判别主要依靠医生的经验,易造成误诊。提出了一个基于卷积神经网络的精准影像分类法,通过从医院放射科电子计算机断层扫描设备采集五种较常见病变类型和一种正常颅脑CT图像作为分类的对象进行预处理。创建一个包含3个卷积层、3个池化层、1个完全连接层的卷积神经网络,并对网络采取了Dropout技术优化处理。并用所采集的颅内病变样本对神经网络进行训练和测试。通过实验将改进后的CNN算法与模板比较法及SVM等传统算法进行比较发现,分类结果的准确度明显优于传统算法,平均识别准确率可达93.54%。 相似文献
14.
逆变器作为一种电力变换的装置,具有性能优越、使用方便等优点,在生产中不可或缺.具有大功率的三电平逆变器核心元器件发生故障时,仅仅依靠人工检查很难直接判断出故障类型,存在一定的安全隐患,而且因为三电平的故障类型差异性很大,造成数据集分布不平衡的问题.针对现有数据集故障样本少、数据集不平衡的问题,本文应用合成少数类过采样技... 相似文献
15.
针对基于卷积神经网络(Convolutional Neural Network,CNN)的遥感图像超分辨率重建算法训练时间较长问题,提出了一种超深的卷积神经网络来重建遥感低分辨率图像的方法。卷积神经网络共有20层,每层包含卷积层和非线性层,层与层之间采用级联的网络结构。其过程为从插值的低分辨率图像(Interpolated Low Resolution Image,ILR)中提取特征,将提取出来的特征通过残差学习预测到高频信息,ILR结合预测的高频信息重建出高分辨率图像(High-resolution Images,HR)。在训练过程中,通过梯度裁剪来防止梯度爆破,使训练保持平稳。实验表明,本文算法与其他算法相比较,主观视觉明显改善,客观评价指标显著提升。 相似文献
16.
针对人体行为识别难于兼顾速度与精度的问题,提出了一种结合运动历史图像(MHI)与卷积神经网络的行为识别算法.该算法首先从原始视频序列中计算MHI,不仅减少了待处理的信息量,还提取了行为识别中的关键时空信息;接着以MHI作为输入,搭建了深度卷积神经网络,可以更好地表达时空信息;最后利用随机梯度下降法与dropout策略训练网络,实现行为类别分类.对比不同卷积神经网络训练与测试实验,该算法在Weizmann行为识别数据集上取得了95%的平均识别率,相较于未改进的网络结构提升了1.2%;对于持续时间为1.6s的行为动作,该算法的识别时间为1.56s.实验结果表明,所提算法在维持较高识别准确率的同时,实现了人体行为的在线实时识别与分类. 相似文献
17.
在传统姿态运动特征提取过程中存在有效提取效率低的问题,于是提出了基于卷积神经网络(convolutional neural network,CNN)算法的时空权重姿态运动特征提取算法.针对所选择的运动时空样本,提取相应的时空运动关键帧并以静态图像的形式输出;采取运动目标检测、图像增强等多项措施完成初始运动图像的预处理工... 相似文献
18.
19.
提出了利用小波神经网络提取图像中文本信息的新颖方法.原图像经过离散小波变换分解成4个子频带,文本区域的高频子频带与非文本区域的不同,所以可利用其差异计算出3个特征值作为人工神经网络的输入值,然后用基于BP算法构建的人工神经网络来训练待测的文本区域.文本区域的人工神经网络输出值不同于非文本区域的输出值,因此可利用一阈值来判定其是否为文本区域.最后,将可检测的文本区域经过扩张运算后便可得到正确的文本区域. 相似文献
20.
为了解决戴口罩人脸识别率不高的问题,开展基于卷积神经网络的研究.本研究所用的数据集均为戴口罩的人脸图像,总共1016张图片,其中测试样本为305张,训练样本为711张.本研究采用对比试验的方法,在初始卷积神经网络模型结构不变的情况下,修改每一个卷积层的卷积核数量,从后往前进行对比,得出本研究最佳模型,人脸检测准确率约为... 相似文献