首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
小麦细胞壁钙调素的研究初报   总被引:7,自引:2,他引:5  
叶正华 《科学通报》1988,33(8):624-624
在植物细胞内钙离子作为第二信使通过钙调素(Calmodulin,简称CaM)而起调节作用,已有许多研究证实和评述。植物体内大部分的Ca~(2+)是存在于细胞壁中,Ca~(2+)和细胞壁的相互作用发挥着重要的生理功能,如细胞壁结构的稳定性,酸性生长,离子交换特性,向地性,细胞壁酶活性的调节等。在植物细胞壁中Ca~(2+)的功能是否通过CaM起调节作用,目  相似文献   

2.
陈鑫阳 《科学通报》1992,37(1):67-67
自从在动物及植物中发现Ca~(2+)的受体——钙调素(CaM)之后,钙与钙调素作为第二信使系统受到极为广泛的重视。在动物方面,由于它比cAMP调节更多的酶和细胞功能,甚至调节着cAMP信使本身,其重要性已在cAMP之上;而在植物中,可以认为它是目前唯一已被确认的第二信使系统。对CaM结构功能进行的大量研究中,发现植物中CaM在  相似文献   

3.
凌启阆 《科学通报》1993,38(21):2005-2005
植物生长素参与植物生长和发育许多方面的调节,有关其调节机理的研究进展活跃。继Rayle(1970)的酸生长理论后,很多研究表明生长素的调节机制与Ca~(2+)紧密相关,Ca~(2+)在植物激素信号的传导中起着信使作用。钙调素(Calmodulin,CaM)是存在于所有真核细胞中的主要钙结合蛋白,参与动植物细胞过程中众多功能的调控。Raghothama等(1985)的研究表明,CaM与生长素导致的细胞伸长有关,Ca~(2+)的信使作用是通过CaM来实现的。  相似文献   

4.
稀土离子和钙调蛋白重组的紫外差光谱及电泳研究   总被引:1,自引:0,他引:1  
陈旭  周玉祥  徐育敏 《科学通报》1996,41(21):1982-1986
对稀土的生物学效应研究表明,稀土元素能促进农作物的生长,增加产量;稀土在一定的浓度下对动物组织具有一定的毒性.目前对稀土在生物体中的作用机理还不很清楚,许多学者认为,稀土离子(Ln~(3+)在生物体内与拮抗Ca~(2+)有关.钙调蛋白(CaM)是一种动植物中普遍存在的非常重要的钙离子受体,它能调节多种酶的活性(如,环核苷酸磷酸二酯酶(PDE)、Ca~(2+)-Mg~(2+)-ATPase、等).这预示着 Ln~(3+)与CaM之间存在着一定的关系.CaM不含色氨酸,它有5条精细的特征峰结构(253,259,265,269,277nm).紫外光谱滴定实验表明,猪脑CaM的两个Tyr残基位于不同的环境:Tyr-99位于分子表面,Tyr-138埋藏于分子内部.Yazawa等发现Ca~(2+)由于影响了CaM中Tyr-138的环境而诱导了286nm负的差谱.本文利用了紫外差光谱法(测定蛋白质在两种环境下的吸收度差)来研究Ln~(3+)对CaM的构象影响.此外,还采用PAGE活性电泳以及SDS-PAGE方法来研究Ln~(3+)和CaM的重组.结果表明.Ln~(3+)与CaM的结合所引起的构象变化与Ca~(2+)的相类似.Ln~(3+)结合CaM后导致CaM的C末端的两个Tyr残基(Try-99,Tyr-138)环境变得更加亲水,明显显示出286nm和279nm负的差谱.由其离子滴定引起这2个差谱的变化大小推测Ln~(3+)能与脱钙CaM(Apo-CaM)的钙结合位点结合.其第1个Ln~(  相似文献   

5.
钙调神经磷酸酶在CaM,Mn~(2+)存在时的构象变化   总被引:1,自引:0,他引:1  
向本琼 《科学通报》1995,40(5):460-460
钙调神经磷酸酶(Calcineurin,CaN)是由A,B两亚基1:1组成的二聚体酶.A亚基是CaN的催化亚基,上有钙调素(CaM)、B亚基和金属离子结合位点.B亚基是调节亚基,上有4个Ca~(2+)结合位点,在维系酶的活性构象方面起着重要的作用.肖方祥等用Mn~(2+)作为Ca~(2+)探针进行了CaN,CaN+CaM结合Mn~(2+)的ESR研究,其结果表明,CaN上有2个Mn~(2+)结合位点,然而分离的A,B亚基上分别有2个、4个Mn~(2+)结合位点,CaN-CaM复合物  相似文献   

6.
徐友涵 《科学通报》1985,30(17):1348-1348
红细胞膜Ca~(2 )-Mg~(2 )-ATPase具有Ca~(2 )跨膜主动运转的功能,以维持胞内低Ca~(2 )浓度。目前已知该酶受钙调蛋白(CaM)的调节。CaM是广泛分布的一种钙结合蛋白,是非肌细胞主要的Ca~(2 )受体,它在调节各种依赖Ca~(2 )的细胞功能和酶体系中起重要作用。 CaM活化的环核苷酸磷酸二脂酶、红细胞膜Ca~(2 )-Mg~(2 )-ATPase活性可被多种CaM拮  相似文献   

7.
杨福愉 《科学通报》1995,40(3):287-287
正常生理条件下,红细胞内Ca~(2+)浓度为10~(-6)mol/L,而血液中的Ca~(2+)浓度则约10~(-3)mol/L,因此在红细胞膜两侧存在着约1000倍的跨膜Ca~(2+)梯度.我们曾报道过跨膜Ca~(2+)梯度对通过膜脂调节质膜腺苷酸环化酶、肌质网膜Ca~(2+)-ATP酶构象和活力的重要性.红细胞骨架(Cell skeleton)是维持红细胞形态和功能的基础.它由两个结构单元组成——细胞膜和膜骨架(Membraneskeleton).  相似文献   

8.
正常生理条件下,红细胞内Ca~(2+)浓度为10~(-6)mol/L,而血液中的Ca~(2+)浓度则约10~(-3)mol/L,因此红细胞膜两侧存在着1000倍的跨膜Ca~(2+)梯度.有报道在贫血病人的红细胞或老化的红细胞中,红细胞内的Ca~(2+)浓度大幅度上升,导致了跨膜Ca~(2+)梯度的下降.我们曾报道过一个合适的跨膜Ca~(2+)梯度可通过膜脂调节质膜腺苷酸环化酶、肌质网Ca~(2+)-ATP酶的构象和活力.最近,我们又初步报道了一个合适的跨膜Ca~(2+)梯度是红细胞带3蛋白(Band-3)表现较高阴离子转运活力所必须的.那么这种调节作用是否也是通过膜脂进行的呢?众所周  相似文献   

9.
细胞外钙调素对花粉萌发和花粉管伸长的影响   总被引:8,自引:1,他引:8  
马力耕  徐小冬  崔素娟  孙大业 《科学通报》1997,42(24):2648-2652
钙调素(Calmodulin CaM)作为主要的多功能的Ca~(2+)受体,传统上被认为是细胞内信号转导(Signal transduction)途径中的主要信号分子。然而近年来国内外的一些研究结果表明CaM不仅存在于细胞内,也存在于细胞外。在植物系统中,Biro和孙大业等人(1984)首次发现燕麦胚芽鞘细胞壁中存在CaM,随后我室一系列工作,包括从小麦细胞壁中纯化CaM、用金标免疫电子显微镜从玉米根尖细胞壁中检测到CaM,以及从悬浮培养的白芷和胡萝卜胞培养介质中检测到CaM,证实了植物细胞外CaM存在的普遍性。另外,我室近年来还发现细胞外CaM可以促进白芷细胞增值、原生质体壁再生及第一次分裂,并且还在白芷和胡萝卜细胞外检测到了CaM结合蛋白(CaMBPs),并将其中主要的分子量为21 ku的CaMBP纯化。上述结果表明植物细胞外不仅存在CaM,而且细胞外CaM还具有生物学功能。  相似文献   

10.
卢坤平 《科学通报》1988,33(10):800-800
在动脉粥样硬化和高血压的发病过程中,常伴有血管平滑肌细胞的增殖。关于Ca~(2+)和CaM(钙调素)与平滑肌细胞增殖的关系尚未见文献报道。实验研究了主动脉平滑肌  相似文献   

11.
杨小毅  范高峰  黄有国  杨福愉 《科学通报》1996,41(12):1131-1134
在正常生理状态下,真核细胞内Ca~(2+)浓度为10~(-7)~10~(-6)mol/L,细胞外侧为10~(-3)mol/L,即细胞膜的两侧存在1000~10000倍的跨膜Ca~(2+)梯差。当细胞外信息跨膜传递时细胞外Ca~(2+)内流,胞浆中的Ca~(2+)浓度升高,细胞膜两侧的跨膜Ca~(2+)梯差降低约10倍,即膜内外两侧的跨膜Ca~(2+)梯差为100倍;而信息传递完成后胞浆中的Ca~(2+)会通过质膜上的Ca~(2+)-ATP酶或Na~+-Ca~(2+)交换运出细胞外以维持膜两侧合适的跨膜Ca~(2+)梯差。因此,细胞膜两侧的跨膜Ca~(2+)梯差在维持细胞正常功能中具有重要的生理意义。但这种跨膜Ca~(2+)梯差对膜结合蛋白,尤其是对参与构成信息跨膜转导体系的膜蛋白的结构与功能及其相互作用的影响尚未引起足够的重视。  相似文献   

12.
孟祥兵 《科学通报》1994,39(11):1046-1046
钙调神经磷酸酶是哺乳动物脑内含量极丰富的唯一依赖Ca~(2+)及钙调素的磷蛋白磷酸酶.该酶(calcineurin,CaN)在脑外组织如精子细胞、淋巴细胞及肌肉组织中也有分布,但含量远远低于脑.CaN由18kD Ca~(2+)结合的调节亚基和61kD钙调素结合的催化亚基组成.除可与Ca~(2+)结合外,该酶还可与Mn~(2+),Ni~(2+),Co~(2+)等金属离子结合而影响其活性.CaN催化亚基已有至少5种cDNA同型物分别从大鼠、小鼠和人基因库中调出.这些基因型是从分别  相似文献   

13.
作为Ca~(2+)在细胞内的主要受体,钙调素(Calmodulin,CaM)广泛存在于各种真核细胞中,是一种能调节细胞生长、分化和转化的多功能蛋白。 由于CaM的反义RNA相对于它的多种拮抗剂来说具有更强的特异性并且没有药理毒性作用,因此我们构建了表达钙调素反义RNA的人肝癌细胞模型,并对此模型在钙调素低表达状态下的生长特性、周期分布、基因表达及其与转化的关系进行了分析,以探讨钙调素对细胞增殖与转化的影响。  相似文献   

14.
豚鼠胰腺内钙调素的免疫组织化学定位研究   总被引:1,自引:0,他引:1  
徐天乐 《科学通报》1993,38(22):2089-2089
钙离子是重要的细胞内调节因子.它的作用几乎涉及到所有的细胞生理过程,如物质代谢、激素分泌、神经递质的合成与释放、肌肉收缩以及细胞的分裂增殖等.钙调素(calmodulin,CaM)是一种广泛分布于真核细胞中的小分子蛋白,它作为细胞内主要的钙受体,传递钙离子浓度变化的信息,影响许多关键酶的活性和生理过程的速率.有研究表明,CaM 在神经组织、睾丸和各种内分泌组织中含量丰富.我们曾用免疫组织化学法观察到 CaM 广泛分布于豚鼠胃和小肠粘膜的内分泌细胞中.已发现 CaM 与胰岛β细胞的功能有密切关系.然而  相似文献   

15.
钙调素在文昌鱼神经系统中的分布   总被引:4,自引:2,他引:4  
徐天乐 《科学通报》1993,38(7):650-650
钙调素(calmodulin,简称CaM)是一种进化上十分保守的小分子酸性钙结合蛋白,广泛分布于各类真核细胞中,参与细胞内多种酶和生理过程的调节。近来采用免疫组织化学技术和放射免疫分析技术等研究证明。哺乳动物神经系统含有丰富的CaM及CaM结合蛋白。CaM对神经功能的调节作用日益受到人们的重视。文昌鱼在进化地位上具有重要意  相似文献   

16.
陈思学  李琳  颜季琼  许政恺  焦新之 《科学通报》1996,41(23):2190-2194
在植物生命活动中,胞外信号(光、温度、重力、水分和激素等)控制着许多生理生化过程。细胞如何感受环境信号,并把它们传递到细胞内,转换为生理反应成为近年来生命科学研究的热点之一。这方面的研究在动物细胞中开展的较早、较广泛和深入。外界信号被动物细胞表面的受体接受后,引起磷脂酶C(PLC)活化,使质膜肌醇磷脂降解,产生第二信使——肌醇三磷酸(IP_3)和二酰甘油(DAG)。IP_3可促进细胞质贮钙体释放Ca~(2+),活化Ca~(2+)-CaM系统或  相似文献   

17.
竹红菌乙素对肌质网Ca~(2+)-ATP酶蛋白色氨酸荧光猝灭研究   总被引:1,自引:0,他引:1  
乐加昌 《科学通报》1995,40(1):76-76
肌质网Ca~(2+)-ATP酶是一种重要的膜蛋白酶,它在肌细胞的收缩舒张功能中起重要作用,因而其动力学行为被广泛地研究,但是有关结构与功能之间关系的直接实验数据仍然不足.为了从分子水平上阐明Ca~(2+)-ATP酶催化原理,1993年Ferrira用荧光猝灭方法首先观察了肌质网Ca~(2+)-ATP酶在加入Ca~(2+)前后分子构象的变化.由于作者使用的猝灭剂是分子氧,除了在测定工作中使用不方便之外,灵敏度也不够高.为此本文用竹红菌乙素作为肌质网Ca~(2+)-ATP酶荧光猝灭剂,分别测定了该酶在有钙或无钙的条件下荧光猝灭的情况,结果证明竹红菌乙素可以在稳态和瞬态的条件下观察到体系中有钙或无钙时的荧光猝灭常数变化的情况(即不同的K_q值);进而说明了竹红菌乙素作为肌质网蛋白荧光猝灭剂可以得到比氧更多的信息和许多其他优点.  相似文献   

18.
王金凤 《科学通报》1986,31(13):1022-1022
二价金属离子对猪心线粒体H~+-ATP酶与大豆磷脂脂质体重建体系酶活性影响的研究指出,Mg~(2+)、Ca~(2+)、Mn~(2+)等二价金属离子可以提高重组酶的活性。本文主要是运用~(31)PNMR(核磁共振)技术研究在大豆磷脂脂质体中,以及在H~+-ATP酶复合体与大豆磷脂脂质体重建的脂酶体中膜脂的结构,同时观察金属离子Co~(2+)对膜脂结构的影响。  相似文献   

19.
魏群  卢景芬 《科学通报》1992,37(22):2112-2113
钙调神经磷酸酶(calcineurin,CaN)是一种依赖于Ca~(2+)/CaM的磷蛋白磷酸酶,由催化亚基A和调节亚基B 1:1组成。其活力  相似文献   

20.
张明志 《科学通报》1990,35(23):1840-1840
血管平滑肌细胞的增殖是动脉粥样硬化和高血压的病理基础。我们曾报道Ca~(2+)和钙调素(CaM)参与兔主动脉平滑肌细胞(ASMC)的增殖调控,但其作用机理尚不清楚。本文报道钙调素依赖性蛋白激酶Ⅱ在兔ASMC增殖周期中的变化动态及其可能的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号