首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.  相似文献   

2.
3.
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons (bound electron-hole pairs) or with electrons. The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter. At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots, motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently. We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.  相似文献   

4.
Progressive field-state collapse and quantum non-demolition photon counting   总被引:1,自引:0,他引:1  
The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system's state. The evolution induced by measurement (known as 'state collapse') can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.  相似文献   

5.
Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.  相似文献   

6.
研究了一类重要的互连网络拓扑结构折叠超立方体网络Qfn的反馈数.设F为Qfn的反馈集,通过构造剩余子图G[V(Qfn)-F]的极大无圈子图得到极小反馈集,从而得到反馈数的上界,用此方法研究折叠超立方体网络Qfn的反馈数问题.根据n维折叠超立方体网络的性质,提出一种新的方法构造无圈子图,改进了已有的”维折叠超立方体网络的反馈数的上界.结果表明,当n为奇数时构造的Qfn+z的无圈导出子图的整体连通性能与已有结论中构造的Q中无圈导出子图R∪Qfon是一致的.  相似文献   

7.
用Pengg-Barnett位相理论分析了光子数压缩态的位相特性.讨论了在弱压缩极限下的位相分布特征,其概率密度分布呈正弦分布,其位相平均值和方差与θ0的选取及压缩参量有关。  相似文献   

8.
确定一般网络(或图)的最小反馈点集问题属NP难问题.n维局部扭立方体网络Qltn是n维超立方体网络Qn的变形且是一类重要的互连网络拓扑结构,其拥有的某些性质优于Qn.根据Qltn顶点集合中最后一位字节不同的特点,将其顶点集合划分为两个不相交的子集,通过构造极大无圈子图得到反馈数的上界,并证明了对任意正整数n≥2,存在常数c∈(0,1)使得反馈数为f(n)=2n-1(1-c/(n-1)).  相似文献   

9.
10.
针对便携式号码图像采集与处理设备,设计了一种基于DSP的号码图像实时采集系统。系统以DSP为核心处理单元,采用CMOS图像传感器采集图像数据,并将图像数据直接保存到系统指定的位置。设计中以CPLD为数据采集逻辑控制单元,实现同步时序控制及并串数据转换功能。实验表明,系统可按15幅/秒的速度实时采集到大小为176×62的清晰的号码图像,并具有DSP实时处理图像的可扩展性。  相似文献   

11.
针对便携式号码图像采集与处理设备,设计了一种基于DSP的号码图像实时采集系统.系统以DSP为核心处理单元,采用CMOS图像传感器采集图像数据,并将图像数据直接保存到系统指定的位置,设计中以CPLD为数据采集逻辑控制单元,实现同步时序控制及并串数据转换功能.实验表明,系统可按15幅/秒的速度实时采集到大小为176×62的清晰的号码图像,并具有DSP实时处理图像的可扩展性.  相似文献   

12.
在两光子自由空间量子隐形传态实验方案中,设计了一套远程光符合的电子学系统,系统最小符合时间窗口约2ns.整个系统包括编码、解码、延时、高压驱动、符合、计数等模块.此系统实现了将实验中的经典信息和量子信息耦合在一起并通过自由空间传送到另一端进行在线符合来判定纠缠光子对.系统中编码模块将Alice端Bell基测量结果的时间标记信息和通道信息叠加在一起,通道信息的编码使用了奇偶校验和汉明码来降低事例丢失率和出错率,解码模块则分离出经典的时间标记信息和通道信息并做相应操作.完成了800m距离的两光子自由空间量子隐形传态实验,实验结果表明用本系统进行远程的实验是可行的.  相似文献   

13.
通过分析一般的基于John von Neumann随机数提取机制的随机数生成方案,提出了一种改进的有效生成真随机数的方案。此方案只需制备一种单量子态进行测量,应用John von Neumann提取机制对数据做处理,最后得到平衡随机序列。与之前的方案相比,改进后的方案更加简洁,且初始阶段所需粒子由Bell态简化成了单量子态。在对大量随机序列做统计后估算误差,进一步提出了简单的生成非平衡随机数的方法。  相似文献   

14.
本文研究二维三电子系统的能谱随禁闭势变化的特征,发现禁闭势很强时,能谱成为独立粒子运动谱。当禁闭势较弱时,电子之间的强关联导致了魔角动量的出现,而系统的结构主要由内禀节面决定。  相似文献   

15.
目的为研究混合量子态MLOCC和ELOCC的最大催化转化概率在一定条件下的数学性质。方法利用tensor积和量子纠缠态的有关性质。结果得出了几个关于MLOCC和ELOCC纠缠转化的定理。结论可以对量子纠缠态的转化问题作进一步的数学研究来加深对量子纠缠转化的物理理解。  相似文献   

16.
运用全量子理论,研究了Tavis-Cummings模型中量子态平均保真度的演化特性,对原子和光场的初态以及两原子的关联程度对平均保真度的影响进行了研究.结果表明,原子、光场和系统的平均保真度依赖于初态时2个原子处在基态的几率以及光场处于真空态的几率;初态两原子在基态无关联,光场处于真空态,体系不失真.  相似文献   

17.
Real-time detection of electron tunnelling in a quantum dot   总被引:3,自引:0,他引:3  
Lu W  Ji Z  Pfeiffer L  West KW  Rimberg AJ 《Nature》2003,423(6938):422-425
Nanostructures in which strong (Coulomb) interactions exist between electrons are predicted to exhibit temporal electronic correlations. Although there is ample experimental evidence that such correlations exist, electron dynamics in engineered nanostructures have been observed directly only on long timescales. The faster dynamics associated with electrical currents or charge fluctuations are usually inferred from direct (or quasi-direct) current measurements. Recently, interest in electron dynamics has risen, in part owing to the realization that additional information about electronic interactions can be found in the shot noise or higher statistical moments of a direct current. Furthermore, interest in quantum computation has stimulated investigation of quantum bit (qubit) readout techniques, which for many condensed-matter systems ultimately reduces to single-shot measurements of individual electronic charges. Here we report real-time observation of individual electron tunnelling events in a quantum dot using an integrated radio-frequency single-electron transistor. We use electron counting to measure directly the quantum dot's tunnelling rate and the occupational probabilities of its charge state. Our results provide evidence in favour of long (10 micros or more) inelastic scattering times in nearly isolated dots.  相似文献   

18.
在经典信息理论中,编码状态可以精确复制与区分;而在量子信息中,由于态的叠加性存在,使得非正交态不可区分,量子态不可复制与删除.但是,量子态的区分和克隆在新型的量子信息科学中具有广泛的应用,例如量子密码的接收和窃听等.本文简要介绍量子态的区分和克隆的数学概念及相关研究结果.  相似文献   

19.
运用了全量子理论,对级联三能级原子和单模光场作用模型中的保真度演化特性进行了研究,讨论了影响保真度的因素。结果显示,系统的保真度主要取决于原子和光场之间的关联程度,当原子处于高能态时,原子和光场关联增强,光场和原子的保真度降低;原子处在低能态时,光场和原子的关联性减弱,光场和原子的保真度增加。  相似文献   

20.
半导体激光器开启瞬态噪声的模拟计算   总被引:2,自引:1,他引:1  
利用状态空间法通过对含噪声项的Langevin速率方程的求解,得到半导体激光器开启瞬态光子数噪声的方差及其自相关函数.结果显示,半导体激光器非稳态的光子数噪声主要表现为弛豫振荡的颤抖时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号