共查询到19条相似文献,搜索用时 62 毫秒
1.
为提高说话人识别系统的识别率,提出了一种提取Mel频率倒谱系数(MFCC)与差分特征组合参数的方法:先对传统的MFCC参数进行特征分量归一化处理,提升MFCC系数的噪声鲁棒性;再用高斯混合模型(GMM)构建了说话人识别系统。使用TIMIT语音库进行实验测试,并比较了不同高斯混合数的MFCC特征参数组合对识别率的影响。结果表明:使用改进的MFCC混合参数明显地提高了说话人的识别率。 相似文献
2.
MFCC中的基音频率信息对说话人识别系统性能的影响 总被引:2,自引:0,他引:2
目前对MFCC的应用与研究,一般忽略了基音频率对MFCC的影响.分析发现,基音频率会影响MFCC对声道特性的准确描述,进而影响说话人识别系统的性能;由此提出了一种基于平滑幅度谱的SMFCC(smoothing MFCC),在YOHO说话人识别数据库上的实验表明,SMFCC性能在整体上优于MFCC,而在女性说话人数据集上性能提高尤其明显,并且具有更好的时间鲁棒性. 相似文献
3.
采用基于听觉特性的Mel频率倒谱系数作为说话人识别特征参数,对概率神经网络进行了描述,并使用该网络进行了文本无关说话人识别研究.实验表明,对20名说话人,用7秒语音训练,3秒语音识别时,该方法可达到96.7%的正确识别率. 相似文献
4.
本论文重点对语音特征参数的组合进行了研究,通过参数的特征组合从不同的角度来反映说话人的个性特征,能够大大提高说话人识别系统的识别率。对其中的特征参数(MFCC及LPCC)的特性及提取过程进行了详细的解释和仿真。 相似文献
5.
比较了基于因特网的说话人识别技术中Mel倒谱特征各阶参数的抗噪性能,并分析和验证了交织及丢失数据替代技术对改善基于因特网的说话人识别系统性能的重要作用。 相似文献
6.
《南阳理工学院学报》2015,(6):56-60
Mel频率倒谱系数(MFCC)是语音特征提取的一种常用方法。因其能够充分模拟人耳的听觉系统,具有较高的识别精度,所以在语音识别中得到了广泛的应用。本文针对MFCC在语音识别中对中高频区域识别精度不高的固有缺陷,通过将MFCC、Mid MFCC、IMFCC与主成分分析(PCA)相结合,提出了一种在全频域实现精确且快速的识别方法,并进行了仿真实验验证。 相似文献
7.
基于VQ的说话人识别系统的实现 总被引:1,自引:0,他引:1
系统以语音信号的LPC倒谱系数、差值倒谱系数、基音周期和差值基音周期的混合特征参数作为识别的特征矢量集,运用矢量量化(VQ)技术实现了与文本有关的说话人识别。在一个10人,1800个语音的语音库上进行了系统的识别实验,其中单音节语音的平均识别率达到了92%,双音节语音达到了96.67%,四音节语音达到了97.67%。系统用于实时识别也收到了较好的效果。 相似文献
8.
说话人识别中语音特征参数研究 总被引:1,自引:0,他引:1
在说话人识别系统中,特征参数的选择和提取对系统的识别性能有关键性的影响。研究了两种重要的语音特征参数,线性预测倒谱系数和美尔倒谱系数,在此基础上提出改进的相位自相关系数,通过实验对几种参数进行了对比,结果表明改进的相位自相关系数能够使系统的误识率明显下降。 相似文献
9.
为了给说话人识别系统的应用提供一个较为重要的技术途径,利用美国TI公司生产的TMS320VC5402DSP作为CPU开发的DSP(D igital S ignal Processor)系统,实时实现了一个基于说话人自适应的开集说话人识别系统。为了提高系统的处理速度和识别的准确性,系统采用少量的语音数据产生说话人模型,在改进的矢量量化方法的基础上,利用一种说话人自适应的阈值处理算法,有效地提高了系统的识别率。同时对降低算法的计算量、数据的存储量进行了较深入的研究。从说话人识别的响应时间、训练时间等综合方面考虑,使真正意义上的说话人识别系统在DSP芯片上实现成为可能。实验表明,该系统在普通机房条件下,可以取得较好的实验效果,系统识别时间小于1 s,完全满足实时性的要求。 相似文献
10.
隐马尔可夫模型(HMM)广泛应用于说话人识别系统中,主要研究了HMM与自组织人工神经网络(SONN)相结合的混合模型HMMNN,并分析构造了基于HMMNN的说话人识别的系统模型. 相似文献
11.
语音识别和说话人识别中各倒谱分量的相对重要性 总被引:37,自引:0,他引:37
采用增减特征分量的方法研究了MFCC各维倒谱分量对说话人识别和语音识别的贡献。使用DTW测度,在标准英文数字语音库上的实验表明,最有用的语音信息包含在MFCC分量C1到C12之间,最有用的说话人信息包含在MFCC分量C2到C16之间。MFCC分量C0和C1包含有负作用的说话人信息,将其作为特征会引起识别率的降低。低阶MFCC分量较高阶分量更容易受加性噪声和卷积噪声干扰。 相似文献
12.
实现了一个基于双分界面的支持向量机的文本无关说话人识别系统,该系统在建立模型的过程中使用高斯混合模型进行特征提取,有效地减少了数据集的规模。与传统的支持向量机方法相比,该方法不仅达到了更高的识别率,对环境具有良好的鲁棒性,并且降低了算法的时间复杂度。由于该方法对大规模数据集的处理能力,使其比传统的方法更适合应用于实际。在相关实验中,也证实了该方法的有效性。 相似文献
13.
说话人识别中改进的MFCC参数提取方法 总被引:1,自引:0,他引:1
在说话人识别技术中,特征参数的提取对语音训练和识别有着非常重要的作用。而Mel频标倒谱系数MFCC是一种常用的特征,它能对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。同时由于语音信号具有时变和混沌特性,以非线性随机共振理论和人类对听觉的理解为基础,提出了一种基于随机共振的MFCC特征参数提取方法。通过实验比较两种方法的结果,论证了改进方法的可行性以及优越性,为说话人识别技术中特征参数提取提供了一条新的研究方向。 相似文献
14.
为了解决动态环境下的说话人识别的辨认率问题,在识别阶段,把小生境粒子群算法应用于GMM之中。从实验得出,采用基于小生境粒子群的高斯混合模型提高了识别性能。 相似文献
15.
在声音识别系统中,特征参数的获取对声音识别和训练有着重要的影响;MFCC算法作为典型的声音特征参数提取方法,性能稳定,识别率高;针对MFCC算法存在较大计算量的情况,提出一种改进的特征参数提取算法MFCC_E;相比于标准的MFCC算法,MFCC_E算法减少了约50%的运算量,并且易于硬件实现;实验结果表明,MFCC_E算法与MFCC算法的识别率大致相同,而计算复杂度却小很多。 相似文献
16.
基于修正MFCC参数汉语耳语音的话者识别 总被引:12,自引:1,他引:12
耳语音的话者识别是一个较新的研究课题,许多参数模型与正常音存在差异.例如话者识别中常见的M el倒谱系数(MFCC)应用于耳语音中就存在共振峰和听觉敏感区域定位的偏差.基于对耳语音共振峰位置、能量以及人耳对耳语音听觉模型的研究提出了修正MFCC参数MFCCM和MFCCExp-Log,并结合两种参数的特点,改进了传统隐马尔可夫模型,建立了适用于耳语音的汉语话者识别系统.通过1 600个音的话者识别实验得出采用MFCCM的正确率为88.88%;MFCCExp-Log参数为91.38%;如果采用改进隐马尔可夫模型正确率可以提高到92.31%,均高于传统参数模型.实验表明,修正MFCC参数可以作为表征耳语音特点的参数,它提高了耳语音话者识别系统的识别率. 相似文献
17.
与文本无关的话者识别一般采用高斯混合模型(GMM),而AdaBoost算法是用于提高各种现有学习算法精度的一种通用的优化算法.论文中讨论如何应用AdaBoostGMM算法进行说话人识别. 相似文献
18.
主要对文本无关的说话人识别技术进行一些探讨。与语音识别不同,说话人识别技术必须提取说话人依赖特点,而语音特征量的选取是利用说话人声音的频谱通过分离傅立叶变换(DCT)获得的。在训练阶段,每一个说话者通过矢量量化产生一个码书(语音数据库)。在认识阶段期间,通过对欧几里德距离代表VQ的计算来减少失真。在一定范围的说话人的语音库中,测试结果表明有很高的识别率,可以达到96%。 相似文献
19.
提出一种新的说话人识别方法,即将D-S证据理论应用于说话人识别中。该方法通过抽取说话人特征,用D-S证据理论对语音特征矢量的各个分量进行数据融合,重新分配基本概率赋值,并依此得出证据可信度,从而达到识别说话人身份的目的。仿真实验证明使用D-S证据理论对说话人的识别比使用矢量量化有更好的识别效果。 相似文献