共查询到20条相似文献,搜索用时 62 毫秒
1.
一种增量式属性约简更新算法 总被引:1,自引:0,他引:1
罗来鹏 《沈阳大学学报:自然科学版》2013,25(3):246-249
根据关系矩阵表示与计算方法,提出一种基于二叉树的增量式属性约简更新算法,主要考虑对象动态增加情况下属性约简的更新问题.该算法通过快速更新二叉树,在动态求解核的基础上,通过对二叉树进行剪枝,有效地进行增量式属性约简的更新,并就该方法的有效性进行了理论证明与示例分析. 相似文献
2.
一种基于条件熵的粗糙集属性约简算法 总被引:1,自引:0,他引:1
粗糙集(Rough set)理论是一个新的数据挖掘方法,其主要思想是保持分类能力不变的情况下,通过属性约简,达到发掘知识并简化知识的目的。本文在理解和分析基于粗糙集理论的数据挖掘算法基础上针对属性约简提出了一个基于条件熵的启发式算法。 相似文献
3.
一种基于差别矩阵的属性约简完备算法 总被引:15,自引:0,他引:15
提出了一种基于差别矩阵的粗糙集属性约简完备算法,算法的求解策略是在每次迭代过程中只选择必要的条件属性,如果在某次迭代过程中找不到这样的条件属性,则任意排除一条件属性,为下一次迭代中找到必要的条件属性做准备.分析了算法在最坏情况下的时间复杂性,给出了该算法相对Pawlak约简的完备性的证明.同已有的同类约简算法相比,该算法在最坏情况下具有更小的时间复杂性. 相似文献
4.
属性约简要求在保证分类和决策能力不变的前提下删除数据库中的冗余属性,简化知识表示,生成决策规则,从而为科学化的管理、预测和决策提供有力的支持。深入系统地研究了基于粗糙集理论的属性约简问题,分别对于相容和不相容决策表,在研究了现有约简算法的基础上,发现算法的局限性、优点和不足,并针对不足,对算法作了一些改进。 相似文献
5.
6.
基于模糊粗糙集的一种属性约简算法 总被引:1,自引:0,他引:1
Sun Ruying 《科技信息》2007,(35)
将粗糙集理论与模糊集理论相结合,提出了一种基于模糊粗糙集的属性约简算法。该方法引入了模糊C均值聚类算法用以连续属性的模糊化;并通过聚类有效性分析来确定最佳分类数目;克服了目前属性模糊化方法需要人为规定划分类数,几乎不考虑信息系统的具体属性值等缺点。实例验证了此方法的有效性。 相似文献
7.
一种改进的粗糙集属性约简启发式算法 总被引:43,自引:0,他引:43
提出了一种改进的属性约简启发式算法 ,讨论了启发式信息的构造 .通过两个反例证明了现有的两种属性重要度定义 (基于属性依赖度的定义和基于信息熵的定义 )的不完备性 ,提出了一种加权平均的属性重要度定义 ;在此基础上构造了两种启发式算法 .通过 UCI机器学习数据库中的几个实例验证了此算法的有效性 相似文献
8.
粗糙集的应用中,对象集通常具有数量大、属性多、单一属性分类大的特点,这是在已有知识基础上提出规则时所遇到的3个主要问题,针对其中单一属性分类的约简问题提出了一种新的方法,它采用了先合并分解再综合的思想简化问题的求解,能快速有效地发掘信息中蕴涵的规则。 相似文献
9.
张国荣 《太原师范学院学报(自然科学版)》2013,(4):91-93
在决策表中求取知识时可以进行属性约简,而属性约简中大部分算法都需计算核.文章基于现有的属性约简算法,提出了改进的约简算法.该算法不需要求核,从而节约了时间与空间,使粗糙集在面对大数据时能更好的处理. 相似文献
10.
沈晨鸣 《南京工程学院学报(自然科学版)》2007,5(1):30-34
粗糙集理论是一种研究不完整、不确定知识处理的数学工具,属性约简是粗糙集理论的核心内容之一.阐述了粗糙集理论的基本思想,给出了一种启发式的最小约简算法,通过一个实例,分析说明算法的可行性和有效性. 相似文献
11.
利用单属性的逼近精度 ,在Jelonek属性约简算法的基础上 ,得到一个改进的属性约简算法 .实例计算结果表明 ,在获得同样的属性约简的情况下 ,该算法与Jelonek算法相比 ,计算量较少 ,提高了计算速度 . 相似文献
12.
基于粗糙集属性约简的模糊模式识别 总被引:3,自引:1,他引:3
通过运用粗糙集归约理论对资料进行浓缩和筛选,略去不必要的属性,简化数据。用模糊模式识别确定对象应当归属的模式,给出其对于各个模式的相对隶属度,从而达到分类目的。经实例计算,得到了较好的结果。 相似文献
13.
通过对大量旅游突发事件的样本数据进行分析和处理,给出了旅游突发事件中决策系统的构建过程,该过程包括属性提取、属性分类(将属性分为条件属性集和决策属性集)和数据清洗.然后在此基础上构建了一个广泛适用的决策表,并应用粗糙集中基于Pawlak属性重要度的属性约简算法对该决策表进行了属性约简.经过属性约简后,在保持决策表的条件属性和决策属性依赖关系不变的前提下,降低了决策表相对于决策属性的条件属性个数,减少了论域的样本数目,从而可以得到一个更有价值的决策表系统.实验结果表明,在约简后的决策表中可更容易地得出简洁实用的决策规则,甚至可以发现一些潜在的决策关系,能在一定程度上提高旅游突发事件关联规则的获取和决策能力. 相似文献
14.
基于粗糙集的属性约简的矩阵方法 总被引:6,自引:0,他引:6
粗糙集理论中,属性约简是知识挖掘的核心。知识获取是根据对象间的某种关系如等价关系、相似关系等来定义。受关系的矩阵表示的启发,本文提出知识的矩阵表示以及属性约简的矩阵方法,这种表示和约简方法具有形式简单规范、运算工整的特点。实例验证了该方法的合理性和有效性。 相似文献
15.
研究基于粗糙集的属性约简算法在数据挖掘规则提取阶段的应用。数据挖掘中对属性进行约简时,经常采用粗糙集,再按照规则进行提取。考察差别矩阵的定义和信息系统比较复杂且核属性元素所占比例较少的情况,改进基于差别矩阵的属性约简算法,利用差别矩阵的结构建立一种新的选择属性的依据。 相似文献
16.
一种基于属性依赖的属性约简算法 总被引:1,自引:0,他引:1
针对现有属性约简算法存在的问题,利用信息论和粗糙集理论,提出了基于属性依赖的属性约简算法,该算法不用求核.首先利用单个条件属性与决策属性的依赖度来选择条件属性,取与决策属性依赖度大的属性,计算完毕后,将得到的条件属性两两之间进行依赖度计算,删除冗余属性,最后得到条件属性的约简.理论分析及实验结果表明该算法具有较好的约简效果及更高的运行效率. 相似文献
17.
基于关系积的属性约简算法 总被引:1,自引:0,他引:1
粗糙集的属性约简是一个NP难问题,目前尚无高效的算法.基于集合理论,提出了关系积概念和基于关系积的属性约简算法,把决策表的属性约简过程转化为关系积的运算,减小了对决策表的扫描次数,提高了属性约简的效率;算法采用自底向上和宽度优先的搜索策略,可确保找到最小属性约简集.结合实例,给出了算法的具体实现. 相似文献
18.
粗糙集理论是一种有效的属性约简方法,但不能直接处理实值数据。针对此问题,本文首先介绍了邻域和覆盖的概念,在此基础上构造了覆盖自约简和覆盖间约简(属性约简)算法;然后通过讨论邻域内各样本之间关系,提出了相斥元的定义,相斥元的存在可能导致决策正域计算错误,从而得到不符合数据表实际情况的属性依赖性,因此给出了分解相斥元的方法;最后在四个实值的基因表达数据库上进行了实验,结果表明该属性约简算法是有效的,并相对于现有其他算法具有较高的分类精度。 相似文献
19.
基于Skowron分明矩阵的有效属性约简算法 总被引:2,自引:0,他引:2
为降低基于Skowron分明矩阵属性约简算法的复杂度,提出了简化分明矩阵及其相应属性约简的定义,并证明了基于简化分明矩阵的属性约简与基于原分明矩阵的属性约简等价.在简化决策表的基础上,定义了一个函数,该函数能度量条件属性在简化分明矩阵中出现的频率,并给出了计算该函数的快速算法,其时间和空间复杂度均为O(|U/C|).用该函数设计了一个有效的基于原分明矩阵属性约简算法,算法的时间复杂度降为O(|C||U|)+O(|C|2|U/C|),空间复杂度降为O(|U|);并用实例证明了算法的有效性. 相似文献
20.
海量数据属性约简的研究是数据挖掘研究中的一个难点.已有的许多属性约简算法对于空间复杂度考虑得不够,导致了算法不能适应大数据集的约简处理.结合分治法,在给定属性序下,提出了基于分治策略的属性约简算法.利用该算法可以快速得到海量数据的属性约简结果.仿真实验结果说明了该算法的高效性. 相似文献