共查询到19条相似文献,搜索用时 140 毫秒
1.
2.
为了提高房价预测精度,采用基于主成分分析的BP神经网络预测模型.首先运用主成分分析对影响房价指标重新组合生成新的综合指标,然后采用非线性预测能力非常强的BP神经网络对其进行建模,并对房价进行预测.仿真结果表明,基于主成分分析的BP神经网络的房价仿真值与历史值的系统总误差只有0.52%,可作为房价预测的一种行之有效的方法. 相似文献
3.
4.
汽车保有量预测对城市交通的发展方向、城市交通的控制管理、城市道路的建设情况等都有直接的参考意义。本文通过分析影响城市汽车保有量的因素,通过参考部分参考文献,城区人口总数人均GDP、公路客运量等8个指标,首先采用主成分分析法将8个因素进行分析,然后建立BP神经网络模型对湖南省2006到2008年汽车保有量进行预测,预测结果分别为98.93万辆、122.18万辆、137.03万辆,与汽车保有量实际值94.64万辆、121.72万辆、142.67万辆很接近,预测精度比较高。这表明BP神经网络具有很强的学习与泛化能力,用于汽车保有量预测的可行性与有效性。 相似文献
5.
基于主成分分析的BP神经网络在电力系统负荷预测中的应用 总被引:1,自引:0,他引:1
BP神经网络应用于电力系统负荷预测时,如果输入空间严重自相关及网络维数较高时,BP神经网络的预测精度会下降。针对这一问题,本文提出一种改进新方法,具体是利用主成分分析(PCA)方法对原输入空间进行重构,并根据各主成分的贡献率来确定网络的结构,从而有效解决了BP网络预测精度下降的问题,最后通过实际的算例验证了该方法的有效性。 相似文献
6.
基于PCA的RBF神经网络预测方法研究 总被引:1,自引:0,他引:1
主成分分析(PCA)法可以提取样本集的主成分,实现样本的最优压缩,从而降低样本的维数。针对用RBF神经网络进行多因素时间序列预测时样本特征指标过多的问题,提出用统计理论的PCA方法对数据进行预处理,再选出几个主成分作为神经网络的输入节点.仿真实验表明,基于PCA的RBF神经网络模型在拟合预测中与一般的RBF神经网络模型相比有较好效果,简化了网络结构,改善了预测精度. 相似文献
7.
8.
基于主成分分析的BP神经网络及其在需水预测中的应用 总被引:5,自引:0,他引:5
以甘肃省瓜州县为例,利用1988~2007年的总需水量数据,采用主成分分析法对影响水资源需求量的7个因子进行主要影响因子分析,根据确定的主要影响因子构造BP神经网络的输入样本,从而进行不同水平的年总需水量预测。结果表明:国内生产总值、工业总产值、农业总产值和大牲口数4个因子为影响研究区需水量的主要因子,将此作为主要因子构造BP神经网络的输入样本,确定网络输入节点数,建立瓜州县总需水量预测模型。模拟计算结果表明,基于主成分分析的BP神经网络模型取,预测结果的绝对误差小于±0.05×109m3。 相似文献
9.
影响股票价格变动的因素有很多,且股票数据具有高度的非线性和时变性等特征,因而采用经典线性时间序列模型可能无法完全提取非线性部分的信息.针对这一问题,建立了BP神经网络模型、PCA-BP神经网络模型、GA-BP神经网络模型和ARIMA(6,1,6)模型对上证综合指数的收盘价格进行预测.计算各预测模型下的统计指标RMSE和MAE,并对4个模型进行对比分析.结果表明,GA-BP神经网络预测模型与其它三种模型相比具有更小的误差,也就是说GA-BP神经网络预测模型对上证综合指数的收盘价格预测效果更好. 相似文献
10.
冲击地压的发生会对矿山造成巨大的经济损失,预测预报是防治冲击地压的重要组成部分.文章将主成分分析方法与反向传播人工神经网络(即BP神经网络)方法相结合,用于对冲击地压的预测.首先,利用主成分分析法对冲击地压的影响因素进行分析,降低数据的维数.然后,将所得的数据作为BP神经网络的输入数据进行训练,用训练好的神经网络对冲击地压进行预测.预测结果与实际结果的对比表明,利用主成分分析-BP神经网络方法对冲击地压预测是可行的. 相似文献
11.
应用BP神经网络理论提出了我国股指期货市场价格走势短期预测模型。首先根据实验数据的特点分别构建单因素、多因素BP神经网络预测模型,再通过重复试验的方法,运用BP神经网络对股指期货价格序列进行训练,从而对股指期货价格进行预测。结果表明,通过BP神经网络预测模型得到的预测值与股指期货的实际价格有着很高的拟合度。 相似文献
12.
应用经验模态分解算法(EMD)和BP神经网络理论提出了我国股指期货市场价格走势预测模型。首先应用EMD分解算法把股指期货价格序列分解成不同尺度的内禀模态分量(IMF),再通过重复试验的方法运用BP神经网络对股指期货价格序列和分解得到的所有IMF的数据序列进行训练,得到股指期货价格的预测模型,并对股指期货价格进行预测。实验表明,通过该方法得到的预测值与股指期货的实际价格有着很高的拟合度。 相似文献
13.
利用BP神经网络建立黄金价格的非线性预测模型,实验结果表明,该网络有较好的预测精度。同时,提出了对于BP神经网络在作为价格预测模型时的一些优化意见与建议。 相似文献
14.
基于贝叶斯正则化BP神经网络的股票指数预测 总被引:1,自引:1,他引:0
提出了利用贝叶斯正则化BP神经网络对股票指数进行预测.通过对比实验表明,贝叶斯正则化的BP神经网络比相同条件下采用其他改进算法有较好的泛化能力,对股票指数预测有很好的效果. 相似文献
15.
16.
基于神经网络的公路网规模预测 总被引:2,自引:1,他引:2
路网规模研究是公路网规划的重要内容。考虑影响公路网合理规模的多种因素,提出了一种基于BP神经网络的公路网规模预测方法,并建立了模拟路网规模与其影响因素间的非线形关系预测模型。步骤依次为:改进传统的BP算法、合理确定影响因素、建立预测模型、模型的训练与检验、数据预测。预测结果表明,该方法客观、合理,预测精度高,实用性强,具有较强的理论与实际应用价值。 相似文献
17.
由于GDP时间序列具有线性和非线性的特征,神经网络(NN)方法和集成预测方法等在预测分析时可能产生较大误差.以GDP的年增长率作为神经网络的输入,建立基于BPNN的GDP预测模型.利用此改进BPNN模型对我国的GDP进行预测和验证,并分别与ARIMA-BP集成模型及BPNN模型进行比较.结果表明,改进的BPNN模型预测... 相似文献
18.
基于BP神经网络的短期降水预报 总被引:5,自引:0,他引:5
人工神经网络(Artificial Neural Network,简记为ANN)是最近发展起来的十分热门的交叉学科,它涉及生物、电子、计算机、数学和物理等学科,并在工程上具有非常广泛的应用前景.本文介绍了BP神经网络的结构及算法,基于BP神经网络的短期降水预报模型的建立,并分析了BP算法在该应用中的优缺点. 相似文献
19.
入炉垃圾热值不稳定,对焚烧炉的稳定运行有很大影响。采用遗传算法优化BP神经网络的权值和阈值,建立垃圾焚烧炉入炉垃圾热值的预测模型。利用Garson方法和主成分分析法对某垃圾焚烧电厂在线运行数据进行分析后,作为BP神经网络的输入参数,实现入炉垃圾热值的在线测量和预测。研究结果表明,该模型预测平均相对误差为2.64%,检验样本相对误差平均值概率为95%的置信区间为[-1.75,2.59],有较高的准确性和置信度,具有较好的工程应用价值。 相似文献