首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以N,N'-(4,4'-二苯砜)二偏苯三甲酰亚胺酰氯为单体,分别与4,4'-二(2-甲基苯氧基)三苯二酮(o-Me-DPOTPDK)、4,4'-二(2,6-二甲基苯氧基)三苯二酮(o-Me2-DPOTPDK)采用低温溶液亲电缩聚合成了两种主链含酰亚胺砜基甲基取代的聚芳醚酮酮树脂,聚合物的对数比浓粘度为6.6和7.5 mL·g-1.用FT-IR、1H NMR对其化学结构进行了表征,DSC、TGA、WAXD研究了其热转变和形态.研究表明:共聚物有较高的玻璃化转变温度(T8:250,278℃)和热分解温度(5%Td:425℃),常温下能溶于N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、氯仿和间甲酚等有机溶剂中,可采用溶剂法加工成型.  相似文献   

2.
以9,9-二[4-(4-胺基苯氧基)苯基]呫吨(BAPX)为第3单体,将其与对苯二甲酰氯、对苯二胺(PPD)在N-甲基-2-吡咯烷酮(NMP)中进行低温溶液共缩聚反应,合成了一系列含呫吨结构的聚酰胺共聚物.研究了单体摩尔浓度、反应初始温度、第3单体用量对共聚反应的影响,并用IR、DSC、TGA等方法对共聚物进行了表征.结果表明:新型聚芳酰胺的特性粘度为1.85~3.20 dL·g-1,具有较高的玻璃化温度(305.6~325.7 ℃),在氮气氛中5%热失重温度为 524~544 ℃,800 ℃时的残炭率在52%以上.随着单体BAPX和PPD摩尔比的增加,共聚物的玻璃化温度逐渐降低,当BAPX和PPD摩尔比大于50/50时,共聚酰胺在常温下可溶于NMP、N,N-二甲基乙酰胺等极性有机溶剂中.  相似文献   

3.
杂环聚芳醚砜、聚芳醚酮及其共聚物合成与性能研究   总被引:7,自引:0,他引:7  
以自制的新型类双酚化合物4-(2-甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮(mM-HPPZ)为单体,与4,4′-二氟二苯酮,4,4′-二氯二苯砜进行溶液缩聚反应,合成了一类新型间甲基取代聚芳醚砜(PPES)、聚芳醚酮(PPEK)及其共聚物聚芳醚砜酮(PPESK,n(S)/n(K)=1/1)材料,并对其聚合条件作了初步探讨;利用核磁共振、红外光谱分析研究了双酚单体及其聚合物的结构,利用DSC、TGA对聚合物的耐热性能进行了分析。实验结果表明,该类双酚单体具有与双酚类似的活性,可以进行聚合反应,新型间甲基取代聚芳醚玻璃化转变温度高(Tg=520-558K);耐热稳定性好,其在氮气氛下5%热失重温度为693K左右,合成的间甲基取代聚芳醚砜、聚芳醚酮及其共聚物聚芳醚砜酮在氯仿、四氯乙烷、四氢呋喃和酰胺类溶剂中可溶解成膜。  相似文献   

4.
采用Yamazaki聚合体系,以9,9-二[4-(4-羧基苯氧基)苯基]呫吨(BCPX)为第三单体,将其与对苯二甲酸(PTA)、对苯二胺(PPD)进行共缩聚反应,合成了一系列含呫吨结构的聚酰胺共聚物.研究了单体摩尔浓度、反应温度、BCPX和PTA摩尔比等对共聚反应的影响,并用IR、DSC、TGA等方法对共聚物进行了表征.结果表明,新型聚芳酰胺的对数比浓粘度为1.90~2.95 dL?g-1,具有较高的玻璃化温度(Tg=297.3~320.5 ℃),在氮气氛中5%热失重温度为522~540 ℃,800 ℃时的残炭率在51% 以上.随着单体BCPX和PTA摩尔比的增加,共聚物的Tg逐渐降低,当BCPX和PTA摩尔比大于50/50时,共聚酰胺在常温下可溶于N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、吡啶等极性有机溶剂中.  相似文献   

5.
在无水AlCl3存在下,将2,6-二苯氧基苯甲腈(DPOBN),4,4′-二苯氧基二苯砜(DPODPS)按照一定的摩尔配比与对-苯二甲酰氯于N-甲基吡咯烷酮/二氯乙烷复合溶剂中进行三元共缩聚反应,合成了一系列含氰侧基的聚醚醚酮酮/聚醚砜醚酮酮共聚物.用IR、DSC、TGA、WAXD等方法对其结构和性能进行了表征.结果表明,所合成的共聚物均为非晶态聚合物,其玻璃化转变温度为162~195℃;TGA分析表明其热分解温度为501~545℃,说明所合成的共聚物具有优异的耐高温性能.共聚物的溶解性能测试结果表明,共聚物都能在NMP、DMF、DMSO等强极性非质子溶剂中溶解及在DCE、THF、CHCl3等普通溶剂中溶解或溶胀.  相似文献   

6.
含杂萘类三联苯结构聚芳酰胺酰亚胺合成与性能   总被引:4,自引:0,他引:4  
采用 Yamazaki膦酰化聚合体系 ,以自制的新型二胺 2 -( 4 -氨基苯基 ) -4 -[4 -( 4 -氨基苯氧基 ) -联苯基 ]-二氮杂萘酮 -1 ( )为单体 ,与自制的芳香二酸进行直接溶液缩聚反应 ,高产率地合成了一类新型含杂萘类三联苯结构聚芳酰胺酰亚胺 .新型聚合物的特性粘度为0 .4 9~ 0 .80 d L .g- 1 ( DMAc,( 2 5± 0 .5 )℃ ) ;以 MS、FT-IR、1 HNMR等分析手段研究了二胺单体 及其聚合物的结构 ;利用 DSC、TGA研究了聚合物的耐热性能 .结果表明 ,新型聚芳酰胺酰亚胺具有高的玻璃化转变温度 ( Tg =5 90~ 6 2 8K) ,氮气氛中 1 0 %热质量损失温度在 71 0~ 74 4K,聚合物 PIa~ PId的表面电阻系数的数量级为 1 0 1 5Ω,体积电阻系数的数量级为 1 0 1 6Ω .cm.X-射线衍射证明所有聚合物均为无定型结构 .聚合物在二甲基甲酰胺、1 -甲基吡咯烷酮和间甲酚等极性有机溶剂中可溶解并能浇注得到透明韧性薄膜 .  相似文献   

7.
以4,4′-二(4-氯甲酰基苯氧基)二苯砜(SODBC)与4,4′-二苯氧基二苯砜(DPODPS)、4,4′-二(2-甲基苯氧基)二苯砜(o-Me-DPODPS)、4,4′-二(3-甲基苯氧基)二苯砜(m-Me-DPODPS)和4,4′-二(2,6-二甲基苯氧基)二苯砜(o-Me2-DPODPS)等为单体在1,2-二氯乙烷(DCE)、N-2-甲基吡咯烷酮(NMP)、无水三氯化铝(AlCl3)溶剂催化剂体系中,通过低温溶液亲电共缩聚合成了聚芳醚砜醚酮(PESEK),邻位、间位甲基取代、双邻位甲基取代的聚芳醚砜醚酮(o-Me-PESEK、m-Me-PESEK、o-Me2-PESEK)聚合物.用FT-IR、1H NMR、DSC、TGA、WAXD等对聚合物进行了表征,研究了聚合物的溶解性.结果表明:聚合物具有较高的玻璃化转变温度(Tg)、良好的热稳定性和优良的溶解性.  相似文献   

8.
以N,N-二甲基丙烯酰胺(DMAA)和4-丙烯酰氧基查尔酮(AC)为单体,以S-十二烷基-S’-(α,α’-二甲基-α’’-乙酸)-三硫代碳酸酯为RAFT试剂,在四氢呋喃溶液中通过RAFT共聚合成了聚(N,N-二甲基丙烯酰胺-co-4-丙烯酰氧基查尔酮)共聚物(poly(DMAA-co-AC)),并通过红外光谱、紫外可见吸收光谱和核磁共振氢谱对共聚物的结构进行了表征。采用可见分光光度法和动态光散射研究了共聚物的温敏性,结果表明,poly(DMAA-co-AC)共聚物是一类具有低临界溶解温度(LCST)的温敏性聚合物,且随着共聚物中AC含量的增加,其LCST降低。  相似文献   

9.
含间苯基及甲基侧基聚芳醚砜醚酮酮的合成与表征   总被引:3,自引:3,他引:0  
以2,2’-二甲基-4,4’-二苯氧基二苯砜(α—CH3-DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,通过亲电缩聚反应,合成了一系列主链含四面体构型的砜基及其醚键邻位含有甲基的新型聚芳醚砜醚酮酮聚合物.结果表明,该类聚合物具有较高的玻璃化转变温度(Tg)和良好的耐热性.  相似文献   

10.
设计含二氮杂萘酮结构的3种二胺单体,与4,4′-(4,4′-异丙基二苯氧基)双(邻苯二甲酸酐)(双酚A二酐)合成一系列不对称新型聚酰亚胺.采用傅里叶红外光谱、核磁共振氢谱法、差示扫描量热法、热重法、凝胶渗透色谱等手段对聚酰亚胺进行结构表征和性能测试,并研究其溶解性、特性粘度.结果表明:聚酰亚胺在室温下易溶于氯仿、吡啶、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮等非质子极性有机溶剂,其氯仿溶液能形成透明、韧性较好的膜,特性粘度为0.50~0.81dL·g-1;聚酰亚胺(P4b~P4c)的数均分子量(Mn)和分散指数(PDI)分别为25 000~34 000和1.21~1.27;此类聚酰亚胺玻璃化转变温度(tg)均大于235℃,而在氮气氛围下,800℃时的残余量为51%~58%,5%和10%的热失重温度分别为446~480℃和459~495℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号