首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrogenic Na-Ca exchange in retinal rod outer segment   总被引:7,自引:0,他引:7  
K W Yau  K Nakatani 《Nature》1984,311(5987):661-663
Previous work has suggested that a Na-Ca exchanger may have a key role in visual transduction in retinal rods. This exchanger is thought to maintain a low internal free Ca2+ concentration in darkness and to contribute to the rod's recovery after light by removing any internally released Ca2+. Little else is known about this transport mechanism in rods. We describe here an inward membrane current recorded from single isolated rods which appears to be associated with such external Na+-dependent Ca2+ efflux activity. External Na+, but not Li+, could generate this current; high external K+ inhibited it while small amounts of La3+ (10 microM) completely abolished it. The exchanger can also transport Sr2+, but not Ba2+ or other divalent cations. The exchange ratio was estimated to be 3Na+:1Ca2+. As well as demonstrating clearly the Na-Ca exchanger in the rod outer segment, our experiments also cast serious doubt on the commonly held view that light simply releases internal Ca2+ to bind to and block the light-sensitive conductance.  相似文献   

2.
3.
4.
K W Yau  K Nakatani 《Nature》1985,313(6003):579-582
The response of retinal rod photoreceptors to light consists of a membrane hyperpolarization resulting from the decrease of a light-sensitive conductance in the outer segment. According to the calcium hypothesis, this conductance is blocked by a rise in intracellular free Ca triggered by light, a notion supported by the findings that an induced rise in internal Ca leads to blockage of the light-sensitive conductance and that light triggers a net Ca efflux from the outer segment via a Na-Ca exchanger, suggesting a rise in internal free Ca in the light. We have now measured both Ca influx and efflux through the outer segment plasma membrane and find that, contrary to the calcium hypothesis, light seems to decrease rather than increase the free Ca concentration in the rod outer segment. This result implies that Ca does not mediate visual excitation but it probably has a role in light adaptation.  相似文献   

5.
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:1 Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:1 Ca2+, 1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+:1 Ca2+ exchange.  相似文献   

6.
L W Haynes  A R Kay  K W Yau 《Nature》1986,321(6065):66-70
The plasma membrane of retinal rod outer segments contains a cyclic GMP-activated conductance which appears to be the light-sensitive conductance involved in phototransduction. Recently, it has been found that this conductance is partially blocked by Mg2+ and Ca2+ at physiological concentrations, thus possibly accounting for the absence of observable single-channel activity in excised membrane patches and for the unusually small apparent unit conductance deduced from noise measurements on intact cells. We now report that, as expected from this idea, single cGMP-activated channel activity can be detected from an excised rod membrane patch in the absence of divalent cations. The most prominent unitary current had a mean conductance of approximately 25 pS. Both individual channel openings (mean open time approximately 1 ms) and short bursts of openings (mean burst duration of about a few milliseconds) were observed. In addition, there were smaller events which probably represented other states of the conductance. The mean current increased with the third power of cGMP concentration, suggesting that there are at least three cGMP-binding sites on the channel molecule. With 0.2 mM Mg2+ in the cGMP-containing solution, a flickering block of the open channel was observed; the effect of Ca2+ was similar. The results resolve a puzzle about the light-sensitive conductance by demonstrating that it is an aqueous pore rather than a carrier.  相似文献   

7.
8.
Vertebrate rod photoreceptors hyperpolarize when illuminated, due to the closing of cation-selective channels in the plasma membrane. The mechanism controlling the opening and closing of these channels is still unclear, however. Both 3',5'-cyclic GMP and Ca2+ ions have been proposed as intracellular messengers for coupling the light activation of the photopigment rhodopsin to channel activity and thus modulating light-sensitive conductance. We have now studied the effects of possible conductance modulators on excised 'inside-out' patches from the plasma membrane of the rod outer segment (ROS), and have found that cyclic GMP acting from the inner side of the membrane markedly increases the cationic conductance of such patches (EC50 30 microM cyclic GMP) in a reversible manner, while Ca2+ is ineffective. The cyclic GMP-induced conductance increase occurs in the absence of nucleoside triphosphates and, hence, is not mediated by protein phosphorylation, but seems rather to result from a direct action of cyclic GMP on the membrane. The effect of cyclic GMP is highly specific; cyclic AMP and 2',3'-cyclic GMP are completely ineffective when applied in millimolar concentrations. We were unable to recognize discrete current steps that might represent single-channel openings and closings modulated by cyclic GMP. Analysis of membrane current noise shows the elementary event to be 3 fA with 110 mM Na+ on both sides of the membrane at a membrane potential of -30 mV. If the initial event is assumed to be the closure of a single cyclic GMP-sensitive channel, this value corresponds to a single-channel conductance of 100 fS. It seems probable that the cyclic GMP-sensitive conductance is responsible for the generation of the rod photoresponse in vivo.  相似文献   

9.
C D Bridges  S L Fong 《Nature》1979,282(5738):513-515
Lectins can be used as probes for cell-surface oligosaccharides1-4. These proteins display high specificities for certain haptene sugars, although the details of the sugar linkages and the three-dimensional array of the oligosaccharide may all be involved in determining the affinity of a lectin for its receptor. We have now shown that peanut and ricin agglutinins bind differentially to the surfaces of rod inner and outer segments.  相似文献   

10.
Rhodopsin content of frog photoreceptor outer segments   总被引:3,自引:0,他引:3  
D Bownds  A C Gaide-Huguenin 《Nature》1970,225(5235):870-872
  相似文献   

11.
12.
Channelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal structure of a ChR (a C1C2 chimaera between ChR1 and ChR2 from Chlamydomonas reinhardtii) at 2.3?? resolution. The structure reveals the essential molecular architecture of ChRs, including the retinal-binding pocket and cation conduction pathway. This integration of structural and electrophysiological analyses provides insight into the molecular basis for the remarkable function of ChRs, and paves the way for the precise and principled design of ChR variants with novel properties.  相似文献   

13.
TRPV3 is a calcium-permeable temperature-sensitive cation channel   总被引:37,自引:0,他引:37  
Transient receptor potential (TRP) proteins are cation-selective channels that function in processes as diverse as sensation and vasoregulation. Mammalian TRP channels that are gated by heat and capsaicin (>43 degrees C; TRPV1 (ref. 1)), noxious heat (>52 degrees C; TRPV2 (ref. 2)), and cooling (< 22 degrees C; TRPM8 (refs 3, 4)) have been cloned; however, little is known about the molecular determinants of temperature sensing in the range between approximately 22 degrees C and 40 degrees C. Here we have identified a member of the vanilloid channel family, human TRPV3 (hTRPV3) that is expressed in skin, tongue, dorsal root ganglion, trigeminal ganglion, spinal cord and brain. Increasing temperature from 22 degrees C to 40 degrees C in mammalian cells transfected with hTRPV3 elevated intracellular calcium by activating a nonselective cationic conductance. As in published recordings from sensory neurons, the current was steeply dependent on temperature, sensitized with repeated heating, and displayed a marked hysteresis on heating and cooling. On the basis of these properties, we propose that hTRPV3 is thermosensitive in the physiological range of temperatures between TRPM8 and TRPV1.  相似文献   

14.
N G Webb 《Nature》1972,235(5332):44-46
  相似文献   

15.
16.
K W Koch  L Stryer 《Nature》1988,334(6177):64-66
Visual excitation in retinal rod cells is mediated by a cascade that leads to the amplified hydrolysis of cyclic GMP (cGMP) and the consequent closure of cGMP-activated cation-specific channels in the plasma membrane. Recovery of the dark state requires the resynthesis of cGMP, which is catalysed by guanylate cyclase, an axoneme-associated enzyme. The lowering of the cytosolic calcium concentration (Cai) following illumination is thought to be important in stimulating cyclase activity. This hypothesis is supported by the finding that the cGMP content of rod outer segments increases several-fold when Cai is lowered to less than 10 nM. It is evident that cGMP and Cai levels are reciprocally controlled by negative feedback. Guanylate cyclase from toad ROS is strongly stimulated when the calcium level is lowered from 10 microM to 10 nM, but only if they are excited by light. We show here that the guanylate cyclase activity of unilluminated bovine rod outer segments increases markedly (5 to 20-fold) when the calcium level is lowered from 200 nM to 50 nM. This steep dependence of guanylate cyclase activity on the calcium level in the physiological range has a Hill coefficient of 3.9. Stimulation at low calcium levels is mediated by a protein that can be released from the outer segment membranes by washing with a low salt buffer. Calcium sensitivity is partially restored by adding the soluble extract back to the washed membranes. The highly cooperative activation of guanylate cyclase by the light-induced lowering of Cai is likely to be a key event in restoring the dark current after excitation.  相似文献   

17.
P R?hlich 《Nature》1976,263(5580):789-791
  相似文献   

18.
19.
K W Yau  K Nakatani 《Nature》1985,317(6034):252-255
Recent experiments by Fesenko et al and ourselves have shown that excised membrane patches from retinal rod outer segments contain a cyclic GMP-sensitive conductance which has electrical properties similar to those of the light-sensitive conductance. This finding supports the notion that cGMP mediates phototransduction (see ref. 3) by directly modulating the light-sensitive conductance. However, some uncertainty remained about whether the patch experiments had discriminated completely between plasma and intracellular disk membranes; thus the cGMP response in an excised membrane could have resulted from contaminating disk membrane fragments, which are known to contain a cGMP-regulated conductance. Furthermore, the patch conductance has not yet been shown to be light-suppressible, an ultimate criterion for identity with the light-sensitive conductance. We now report experiments on a truncated rod outer segment preparation which resolved these issues. The results demonstrated that the cGMP-sensitive conductance was present in the plasma membrane of the outer segment, and that in the presence of GTP the conductance could be suppressed by a light flash. With added ATP, the effectiveness of the light flash was reduced and the suppression was more transient. The effects of both GTP and ATP were consistent with the known biochemistry. From the maximum current inducible by cGMP, we estimate that approximately 1% of the light-sensitive conductance is normally open in the dark; this would give an effective free cGMP concentration of a few micromolar in the intact outer segment in the dark.  相似文献   

20.
Control of Ca2+ in rod outer segment disks by light and cyclic GMP   总被引:4,自引:0,他引:4  
J S George  W A Hagins 《Nature》1983,303(5915):344-348
Photons absorbed in vertebrate rods and cones probably cause electrochemical changes at the photoreceptor plasma membrane by changing the cytoplasmic concentration of a diffusible transmitter substance, reducing the Na+ current flowing into the outer segment of the cell in the dark, to produce the observed membrane hyperpolarization that is the initial excitatory response. Cyclic GMP has been proposed as the transmitter because a light-activated cyclic GMP phosphodiesterase (PDE) has been found in rod disk membranes and because intracellularly injected cyclic GMP reduces rod membrane potentials. Free Ca2+ has also been proposed because increasing external [Ca2+] quickly and reversibly reduces the dark current and divalent cationophores increase the Ca2+ sensitivity. Ca2+ efflux from rod outer segments (ROS) of intact retinas occurs simultaneously with light responses. Vesicles prepared from ROS disk membranes become more permeable on illumination, releasing trapped ions or molecules, but intact outer segment disks have not previously been found to store sufficient Ca2+ in darkness and to release enough in light to meet the theoretical requirements for control of the dark current by varying cytoplasmic Ca2+ (refs 14-18). We now report experiments that show the required Ca2+ storage and release from rod disk membranes suspended in media containing high-energy phosphate esters and electrolytes approximating the cytoplasmic composition of live rod cells. Cyclic GMP stimulates Ca2+ uptake by ROS disks in such media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号