首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了提高基于LC的数控振荡器(DCO)的调频精度,提出一种失配电容对跨接数控变容管结构。该结构利用2个失配电容对对CMOS变容管的最小有效变容值进行缩小变换,使得数字信号可控的最小电容值大大降低。为验证该结构,该文采用中芯国际(SMIC)0.18μm工艺库,在Spectre中对基于该文结构的数控振荡器在不使用ΣΔ调制技术的前提下进行仿真。实验结果表明:该文提出的数控变容结构能使中心频率为3.4 GHz的DCO实现3 kHz的调频精度,还能使调频精度的提高不依赖于工艺库特征尺寸。  相似文献   

2.
为了解决全数控电感电容振荡器(fully digitally controlled inductor-capacitor oscillator, DCO)大信号工作时所引起的数控变容管的非线性问题,在对该种非线性进行分析的基础上,提出一种背靠背串联数控金属氧化物半导体(metal oxide semiconductor, MOS)变容管.该结构通过将两支MOS变容管反方向串联,有效改善了非线性,从而降低了DCO的相位噪声.在中芯国际0.18 μm 互补MOS工艺下设计了采用背靠背串联数控MOS变容管的DCO.仿真结果表明: 当该DCO振荡在3.4 GHz的中心频率时,在1.2 MHz频偏处的相位噪声为-129.4 dBc/Hz, 与使用普通数控MOS变容管的DCO相比,其相位噪声最多可改善8.1 dB.  相似文献   

3.
设计了一个应用于全数字锁相环的宽带电感电容数控振荡器(DCO).通过设计粗调谐电容阵列、中等调谐电容阵列和精细调谐电容阵列,实现了宽的调谐范围.采用NMOS和PMOS互补型交叉耦合电路,实现了低功耗、高优值(FOM)的振荡器.设计采用TSMC 0.13μm CMOS工艺,电源电压为1.2V.测试结果表明,DCO的调谐范围达到3.44~5.25GHz,调谐百分比为41.7%.在4.06GHz频率处,振荡器电路在1MHz频偏处的相位噪声为-117.6 dBc/Hz.在调谐范围内,设计的DCO电路在1 MHz频偏处的FOM值为182~185.5dBc/Hz.功耗为1.44~3.6mW.  相似文献   

4.
在TSMC 65nm工艺下设计了一个调谐范围为3~5GHz、用于全数字锁相环的宽带数控LC振荡器.该振荡器的电容阵列分成粗调、中调和细调三个阵列,其中粗调为MIM开关电容,中调和细调采用数控人造介质(DiCAD)实现.测试结果表明:当中心频率为3GHz和5GHz时,频偏1MHz处相位噪声分别为-123dBc/Hz和-116dBc/Hz,功耗分别为12mA和5mA.  相似文献   

5.
本文对传统正交压控振荡器(QVCO)耦合方式进行了改进,提出了在耦合管的源端引入相移网络的方法,从而改善了QVCO电路的相位噪声性能以及减小输出相位失配,并依此设计了一个低相位噪声,输出相位关系稳定的宽带正交压控振荡器.QVCO电路采用TSMC 0.13 μm CMOS工艺进行设计,输出频率范围为3.4~5.48 GHz,即调谐范围达46.8%.测试表明,输出频率4.2 GHz时在频偏1 MHz处,相位噪声为-120 dBc/Hz.在整个输出频率范围内电路FOM值介于179.5~185.2 dB,电路功耗为7.68~18mW.  相似文献   

6.
设计了一个应用于四频带全球移动通信系统(GSM)收发机的频率分辨率改进型数控振荡器.提出了一种新型串联开关变容管模型并进行理论分析,将其应用在振荡器的精确调谐电容阵列中,验证了其对频率分辨率增强的性能.设计采用90 nm互补金属氧化物半导体工艺,当谐振在3.1 GHz时,数字加抖前的频率分辨率达到1.6 kHz,距中心频率20 MHz处的相位噪声为-152 dBc/Hz,功耗8.16 mW.仿真表明,该频率分辨率改进型数控振荡器满足四频带GSM收发机的要求,适于应用在全数字锁相环中.  相似文献   

7.
采用TSMC 0.13μm CMOS工艺设计了一款宽带电感电容压控振荡器(LC-VCO).LC-VCO采用互补型负阻结构,输出信号对称性较好,可以获得更好的相位噪声性能.为达到宽的调谐范围,核心电路采用4 bit可重构的开关电容调谐阵列以降低调谐电路增益,并使用可变电容在每段开关电容子频带上实现调谐.此外,压控振荡器的设计采用了开关电流源、开关交叉耦合对和噪声滤波等技术,以优化电路的相位噪声、功耗、振荡幅度等性能.整个芯片(包括焊盘)面积为1.11 mm×0.98 mm.测试结果表明,在1.2 V电源电压下,UWB和IMT-A频段上压控振荡器所消耗的电流分别为3.0和5.6 mA,压控振荡器的调谐范围为3.86~5.28和3.14~3.88GHz.在振荡频率3.534和4.155 GHz上,1 MHz频偏处,压控振荡器的相位噪声分别为-122和-119 dBc/Hz.  相似文献   

8.
随着通信技术对射频收发机性能要求的不断提高,高性能压控振荡器已成为模拟集成电路设计、生产和实现的关键环节。针对压控振荡器设计过程中存在相位噪声这一核心问题,文中采用STMC 0.18μm CMOS工艺,提出了一种1.115 G的电感电容压控振荡器电路设计方案,利用Cadence中的Spectre RF对电路进行仿真。研究结果表明:在4~6 V的电压调节范围内,压控振荡器的输出频率范围为1.114 69~1.115 38 GHz,振荡频率为1.115 GHz时,在偏离中心频率10kHz处,100 kHz处以及1 MHz处的相位噪声分别为-90.9 dBc/Hz,-118.6 dBc/Hz,-141.3dBc/Hz,以较窄的频率调节范围换取较好的相位噪声抑制,从而提高了压控振荡器的噪声性能。  相似文献   

9.
设计一种应用于锁相环(PLL)电路的压控振荡器(VCO).该电路采用浮空电容结构,相对传统接地电容结构,可提高电容充放电幅值,减小时钟抖动.快速电平检测电路,使电路在未采用反馈和补偿的前提下,减小环路延时,从而实现高线性.电路采用CSMC 0.6 μm CMOS标准工艺库实现.仿真结果表明:振荡频率为0.79,24,30 MHz时的相位噪声达到-128,-122,-120 dBc·Hz-1@1 MHz.通过调节外接电阻电容,使得电路在3~6 V电源电压下,输出100.0~3.0×107 MHz的矩形波,电路兼具低相位噪声和高线性特性.  相似文献   

10.
本文提出了一种新型的超低相位噪声VCO结构,该结构能够在不增加额外电感、不增大芯片面积的前提下,实现输出电压摆幅的大幅度提高,使得摆幅可以高于供电电压且低于地电位,进而改进VCO的相位噪声。采用TSMC 0.13 μm CMOS工艺对该VCO进行设计。芯片测试结果表明:该VCO的振荡频率为5.5 GHz~6.2 GHz,在5.8 GHz振荡频率处,相位噪声达到-126.26 dBc/Hz@1 MHz,消耗的功耗为2.5 mW。归一化FOM指标达到-197.5 dBc/Hz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号