首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
The structure of the membrane-containing bacteriophage PRD1 has been determined by X-ray crystallography at about 4 A resolution. Here we describe the structure and location of proteins P3, P16, P30 and P31. Different structural proteins seem to have specialist roles in controlling virus assembly. The linearly extended P30 appears to nucleate the formation of the icosahedral facets (composed of trimers of the major capsid protein, P3) and acts as a molecular tape-measure, defining the size of the virus and cementing the facets together. Pentamers of P31 form the vertex base, interlocking with subunits of P3 and interacting with the membrane protein P16. The architectural similarities with adenovirus and one of the largest known virus particles PBCV-1 support the notion that the mechanism of assembly of PRD1 is scaleable and applies across the major viral lineage formed by these viruses.  相似文献   

2.
D P Witt  J A Gordon 《Nature》1980,287(5779):241-244
Chick embryo fibroblasts (CEF) infected with avian sarcoma virus become rapidly transformed as a result of expression of the viral src gene in the form of a single polypeptide of molecular weight 60,000 (pp60src) with protein kinase activity and suggested preferential association with the plasma membrane. Studies with normal avian and mammalian cells have revealed the presence of an antigenically related protein which seems to have similar kinase activity, but which is present at less than 1% of the levels of virally induced src protein found in transformed cells. As dynamic phosphorylation is important in numerous regulatory processes, the phenotypic expression of transformation may arise from an imbalance in one or more regulatory mechanisms that are controlled by protein phosphorylation. The cell membrane is affected during transformation, including its phosphotransferase activity. The latter has been shown using isolated membrane fractions whose properties may be changed during preparation. Therefore, we have compared the phosphorylation state of individual membrane proteins found in intact normal and RSV-transformed cells and report here the identification of two heavily phosphorylated, acidic membrane proteins in normal CEF which are specifically dephosphorylated on transformation by wild-type and temperature-sensitive Rous sarcoma viruses.  相似文献   

3.
The manner in which a membrane protein is anchored to the lipid bilayer may have a profound influence on its function. Most cell surface membrane proteins are anchored by a membrane-spanning segment(s) of the polypeptide chain, but another type of anchor has been described for several proteins: a phosphatidyl inositol glycan moiety, attached to the protein C terminus. This type of linkage has been identified on membrane proteins involved in adhesion and transmembrane signalling and could be important in the execution of these functions. We report here that an immunologically important adhesion glycoprotein, lymphocyte function-associated antigen 3 (LFA-3), can be anchored to the membrane by both types of mechanism. These two distinct cell-surface forms of LFA-3 are derived from different biosynthetic precursors. The existence of a phosphatidyl-inositol-linked and a transmembrane anchored form of LFA-3 has important implications for adhesion and transmembrane signalling by LFA-3.  相似文献   

4.
V Bennett 《Nature》1979,281(5732):597-599
Ankyrin is a polypeptide of molecular weight (MW) 200,000 which is tightly bound to the cytoplasmic surface of the human erythrocyte membrane and has been identified as the high-affinity membrane attachment protein for spectrin. This protein has also been shown to be associated with band 3 (ref. 4), the major transmembrane protein which links a cytoplasmic structural protein to an integral membrane protein. A water-soluble, 72,000-MW, proteolytic fragment of ankyrin has been purified which retains the ability to bind to spectrin, and competitively inhibits reassociation of spectrin with membranes. Monospecific antibodies directed against this fragment have been prepared and demonstrated to cross-react only with ankyrin among the erythrocyte membrane proteins. The present study reports the use of these antibodies to develop a radioimmunoassay capable of detecting femtomolar quantities of ankyrin, and demonstrates the presence of small but significant amounts of immunoreactivity in a variety of types of cells and tissues.  相似文献   

5.
Recent Advances in Protein Extraction and Chiral Separation of Blomolecules   总被引:1,自引:0,他引:1  
Reverse micelles create unique environment in organic media. They are capable of solubilizing hydrophilic biomolecules (e.g., proteins, peptides, amino acids, and DNAs) in their aqueous interior. This feature brings about the practical use of biomaterials in organic media because reverse micelles solubilize them with the intrinsic activity. In this paper, we focus on recent two topics concerning protein extraction and chiral separation of biomolecules using liquid membranes. In the first topic, we present recent attempts to extract proteins from an aqueous solution into isooctane using reverse micelles, and some important operational parameters to achieve an efficient protein transfer are discussed. Furthermore, novel function of reverse micelles as a protein activation medium is introduced. In the reverse micellar phase, denatured proteins were completely reactivated in the reverse micellar solution. The reverse micellar technique is found to be a useful tool not only for protein separation but also for protein refolding. Furthermore, we found that a cyclic ligand carixarene has an extraction ability to set up optimum conditions for protein transfer. In the second topic, we have found that a supported liquid membrane (SLM) encapsulating enzymes shows high enantioselectivity (enantioselective excess value is over 96%) in the transport of racemic pharmaceutical compound ibuprofen. A different experiment also suggests that the α-chymotrypsin-catalyzed reactions droved the enantioselective transport of L-phenylalanine based on the enantioselectivity of the enzyme. The SLM encapsulating the surfactant-enzyme complex enabled the highly enantioselective separation of racemic mixtures. It can be envisioned that arrangement of appropriate enzymes in the SLM system will allow enantioselective separation of various useful organic compounds.  相似文献   

6.
H C Oettgen  C L Pettey  W L Maloy  C Terhorst 《Nature》1986,320(6059):272-275
Antigen recognition by human T lymphocytes and initiation of T-cell activation are mediated by a group of integral membrane proteins, the T-cell antigen receptor (TCR) and the T3 complex. The polypeptides which comprise T3 (a gamma-chain of relative molecular mass (Mr) 25,000 (25K), and delta and epsilon chains of 20K each) are physically associated with the TCR chains. Surface expression of the complex requires the presence of all the component T3 and TCR proteins. In contrast to the human system, murine T3 has not been identified using antibodies. Here we describe a murine T3-like protein complex. It appears to be more complicated than human T3, containing three monomeric glycoproteins (21-28K), two of which have N-linked carbohydrate side chains and a novel family of TCR-associated homo- and heterodimers. The 28K protein is identified as the murine T3 delta-chain. The 21K protein is phosphorylated on cell activation with concanavalin A (Con A).  相似文献   

7.
Modulation of spectrin-actin assembly by erythrocyte adducin   总被引:3,自引:0,他引:3  
K Gardner  V Bennett 《Nature》1987,328(6128):359-362
The spectrin-based membrane skeleton, an assembly of proteins tightly associated with the plasma membrane, determines the shape and mechanical properties of erythrocytes. Spectrin, the most abundant component of this assembly, is an elongated and flexible molecule that, with potentiation by protein 4.1, is cross-linked at its ends by short actin filaments to form a lattice beneath the membrane. These and other proteins stabilize the plasma membrane, organize integral membrane proteins and maintain specialized regions of the cell surface. A membrane-skeleton-associated calmodulin-binding protein of erythrocytes is a major substrate for Ca2+- and phospholipid-dependent protein kinase C (ref. 5), and thus is a target for Ca2+ by two regulatory pathways. Here we demonstrate that this protein, called adducin: (1) binds tightly in vitro to spectrin-actin complexes but with much less affinity either to spectrin or to actin alone; (2) promotes assembly of additional spectrin molecules onto actin filaments; and (3) is inhibited in its ability to induce the binding of additional spectrin molecules to actin by micromolar concentrations of calmodulin and Ca2+. Adducin may be involved in the action of Ca2+ on erythrocyte membrane skeleton and in the assembly of spectrin-actin complexes.  相似文献   

8.
T Kamata  J R Feramisco 《Nature》1984,310(5973):147-150
Several human tumour cell lines contain genes that can transform NIH 3T3 cells into malignant cells. Certain genes have been classified as members of the ras oncogene family, namely, Ha-ras, Ki-ras or N-ras. The proteins encoded by the ras family are generally small (Ha-ras, for example, encodes a protein of molecular weight 21,000 named p21), and are associated with the inner surface of the plasma membrane. The only known biochemical property common to all forms of the ras proteins is the ability to bind guanine nucleotides, a property which may be closely related to the transforming ability of ras proteins. A GTP-dependent, apparent autophosphorylation (on threonine 59) activity has been identified only in the case of the v-Ha-ras protein. Although the role of these biochemical activities in the transformation process remains unclear, we have initiated studies to determine the possible biochemical interactions of ras proteins with other membrane components. We report here the evidence that epidermal growth factor enhances the guanine nucleotide binding activity of activated c-Ha-ras or v-Ha-ras p21, and phosphorylation of v-Ha-ras p21, suggesting that some mitogenic growth factors may regulate those activities.  相似文献   

9.
Subtypes of H1N1 influenza virus can be found in humans in North America, while they are also associated with the infection of swine. Characterization of the genotypes of viral strains in human populations is important to understand the source and distribution of viral strains. Genomic and protein sequences of 10 isolates of the 2009 outbreak of influenza A (H1N1) virus in North America were obtained from GenBank database. To characterize the genotypes of these viruses, phylogenetic trees of genes PB2, PB1, PA, HA, NP, NA, NS and M were constructed by Phylip3.67 program and N-Linked glycosylation sites of HA, NA, PB2, NS1 and M2 proteins were analyzed online by NetNGlyc1.0 program. Phylogenetic analysis indicated that these isolates are virtually identical but may be recombinant viruses because their genomic fragments come from different viruses. The isolates also contain a characteristic lowly pathogenic amino acid motif at their HA cleavage sites (IPSIQSR↓GL), and an E residue at position 627 of the PB2 protein which shows its high affinity to humans. The homologous model of M proteins showed that the viruses had obtained the ability of anti-amantadine due to the mutation at the drug-sensitive site, while sequence analysis of NA proteins indicated that the viruses are still susceptible to the neuraminidase inhibitor drug (i.e. oseltamivir and zanamivir) because no mutations have been observed. Our results strongly suggested that the viruses responsible for the 2009 outbreaks of influenza A (H1N1) virus have the ability to cross species barriers to infect human and mammalian animals based on molecular analysis. These findings may further facilitate the therapy and prevention of possible transmission from North America to other countries.  相似文献   

10.
Phosphorylation of membrane components is thought to be an important process in membrane function. Phosphorylated proteins and a special class of phospholipids, the (poly)phosphoinositides (poly PI), are implicated in the regulation of membrane permeability and synaptic transmission in neurones. For many years, protein phosphorylation and poly PI metabolism have been studied in parallel without knowledge of their possible interaction. We report here that the ACTH-sensitive protein kinase/B-50 protein complex which we recently isolated in soluble form from rat brain synaptosomal plasma membranes has lipid phosphorylating activity. Exogenously added phosphatidylinositol 4-phosphate (DPI) is phosphorylated to phosphatidylinositol 4,5-diphosphate (TPI), and this DPI-kinase activity is dependent on the state of phosphorylation of the protein kinase/B-50 protein complex. The results imply that phosphorylation of protein may affect the metabolism of (poly) PI in brain cell membranes.  相似文献   

11.
Homologies between gap junction proteins in lens, heart and liver   总被引:20,自引:0,他引:20  
J Kistler  D Christie  S Bullivant 《Nature》1988,331(6158):721-723
The cells in the mammalian lens are electrically and metabolically coupled with each other by a network of gap junctions. These are clusters of transmembrane channels by which the fibre cells situated deeper in the lens communicate through the epithelium with the aqueous humour, the source of nutrients for the lens. Hence gap junctions are important for lens transparency. The gap junction proteins in the mammalian lens have not yet been identified with certainty. A putative fibre gap junction protein of relative molecular mass 26,000 (26K) is not related to those from other tissues, such as the liver 28K junction component. Another lens membrane protein with Mr 70K (MP70) has also been localized in the lens fibre gap junctions. Here we demonstrate by amino-terminal sequence analysis that MP70 and its in vivo-processed form, MP38 (ref. 8), belong to a wider family of gap junction proteins. With this new data on the lens, homologies between gap junction proteins now extend to organs derived from all three embryonal layers, endoderm (liver), mesoderm (heart) and ectoderm (lens).  相似文献   

12.
Membranes are essential for selectively controlling the passage of molecules in and out of cells and mediating the response of cells to their environment. Biological membranes and their associated proteins present considerable difficulties for structural analysis. Although enveloped viruses have been imaged at about 9 A resolution by cryo-electron microscopy and image reconstruction, no detailed crystallographic structure of a membrane system has been described. The structure of the bacteriophage PRD1 particle, determined by X-ray crystallography at about 4 A resolution, allows the first detailed analysis of a membrane-containing virus. The architecture of the viral capsid and its implications for virus assembly are presented in the accompanying paper. Here we show that the electron density also reveals the icosahedral lipid bilayer, beneath the protein capsid, enveloping the viral DNA. The viral membrane contains about 26,000 lipid molecules asymmetrically distributed between the membrane leaflets. The inner leaflet is composed predominantly of zwitterionic phosphatidylethanolamine molecules, facilitating a very close interaction with the viral DNA, which we estimate to be packaged to a pressure of about 45 atm, factors that are likely to be important during membrane-mediated DNA translocation into the host cell. In contrast, the outer leaflet is enriched in phosphatidylglycerol and cardiolipin, which show a marked lateral segregation within the icosahedral asymmetric unit. In addition, the lipid headgroups show a surprising degree of order.  相似文献   

13.
About 20%-30% of genome products have been predicted as membrane proteins, which have significant biological functions. The prediction of the amount and position for the transmembrane protein helical segments (TMHs) is the hot spot in bioinformatics. In this paper, a new approach, maximum spectrum of continuous wavelet transform (MSCWT), is proposed to predict TMHs. The predictions for eight SARS-CoV membrane proteins indicate that MSCWT has the same capacity with software TMpred. Moreover, the test on a dataset of 131 structure-known proteins with 548 TMHs shows that the prediction accuracy of MSCWT for TMHs is 91.6% and that for membrane protein is 89.3%.  相似文献   

14.
Transport of cationic amino acids by the mouse ecotropic retrovirus receptor.   总被引:53,自引:0,他引:53  
J W Kim  E I Closs  L M Albritton  J M Cunningham 《Nature》1991,352(6337):725-728
Susceptibility of rodent cells to infection by ecotropic murine leukaemia viruses (MuLV) is determined by binding of the virus envelope to a membrane receptor that has multiple membrane-spanning domains. Cells infected by ecotropic MuLV synthesize envelope protein, gp70, which binds to this receptor, thereby preventing additional infections. The consequences of envelope-MuLV receptor binding for the infected host cell have not been directly determined, partly because the cellular function of the MuLV receptor protein is unknown. Here we report a coincidence in the positions of the first eight putative membrane-spanning domains found in the virus receptor and in two related proteins, the arginine and histidine permeases of Saccharomyces cerevisiae (Fig. 1), but not in any other proteins identified by computer-based sequence comparison of the GenBank data base. Xenopus oocytes injected with receptor-encoding messenger RNA show increased uptake of L-arginine, L-lysine and L-ornithine. The transport properties and the expression pattern of the virus receptor behave in ways previously attributed to y+, the principal transporter of cationic L-amino acids in mammalian cells.  相似文献   

15.
SLAM (CDw150) is a cellular receptor for measles virus   总被引:50,自引:0,他引:50  
Tatsuo H  Ono N  Tanaka K  Yanagi Y 《Nature》2000,406(6798):893-897
Measles virus continues to be a major killer of children, claiming roughly one million lives a year. Measles virus infection causes profound immunosuppression, which makes measles patients susceptible to secondary infections accounting for high morbidity and mortality. The Edmonston strain of measles virus, and vaccine strains derived from it, use as a cellular receptor human CD46 (refs 3, 4), which is expressed on all nucleated cells; however, most clinical isolates of measles virus cannot use CD46 as a receptor. Here we show that human SLAM (signalling lymphocyte-activation molecule; also known as CDw150), a recently discovered membrane glycoprotein expressed on some T and B cells, is a cellular receptor for measles virus, including the Edmonston strain. Transfection with a human SLAM complementary DNA enables non-susceptible cell lines to bind measles virus, support measles virus replication and develop cytopathic effects. The distribution of SLAM on various cell lines is consistent with their susceptibility to clinical isolates of measles virus. The identification of SLAM as a receptor for measles virus opens the way to a better understanding of the pathogenesis of measles virus infection, especially the immunosuppression induced by measles virus.  相似文献   

16.
R A Anderson  V T Marchesi 《Nature》1985,318(6043):295-298
Many of the physical properties of the erythrocyte membrane appear to depend on the membrane skeleton, which is attached to the membrane through associations with transmembrane proteins. A membrane skeletal protein, protein 4.1, is pivotal in the assembly of the membrane skeleton because of its ability to promote associations between spectrin and actin. Protein 4.1 also binds to the membrane through at least two sites: a high-affinity site on the glycophorins and a site of lower affinity associated with band 3 (ref. 11). The glycophorin-protein 4.1 association has been proposed to be involved in maintenance of cell shape. Here we show that the association between glycophorin and protein 4.1 is regulated by a polyphosphoinositide cofactor. This observation suggests a mechanism which may explain the recently reported dependence of red cell shape on the level of polyphosphoinositides in the membrane.  相似文献   

17.
Low-molecular-weight GTP-binding proteins are strong candidates for regulators of membrane traffic. In yeast, mutations in the sec4 or ypt1 genes encoding small GTP-binding proteins inhibit constitutive membrane flow at the plasma membrane or Golgi complex, respectively. It has been suggested that membrane fusion-fission events are regulated by cycling of small GTP-binding proteins between a membrane-bound and free state, but although most of these small proteins are found in both soluble and tightly membrane-bound forms, there is no direct evidence to support such cycling. In rat brain a small GTP-binding protein, rab3A, is exclusively associated with synaptic vesicles, the secretory organelles of nerve terminals. Here we use isolated nerve terminals to study the fate of rab3A during synaptic vesicle exocytosis. We find that rab3A dissociates quantitatively from the vesicle membrane after Ca2(+)-dependent exocytosis and that this dissociation is partially reversible during recovery after stimulation. These results are direct evidence for an association-dissociation cycle of a small GTP-binding protein during traffic of its host membrane.  相似文献   

18.
Endocytosis functions to recycle plasma membrane components, to regulate cell-surface expression of signalling receptors and to internalize nutrients in all eukaryotic cells. Internalization of proteins, lipids and other cargo can occur by one of several pathways that have different, but often overlapping, molecular requirements. To mediate endocytosis, effectors assemble transiently underneath the plasma membrane, carry out the mechanics of membrane deformation, cargo selection and vesicle internalization, and then disassemble. The mechanism by which endocytosis initiates at particular locations on the plasma membrane has remained unknown. Sites of endocytosis might be formed randomly, induced by stochastic protein and/or lipid clustering. Alternatively, endocytosis might initiate at specific locations. Here we describe large immobile protein assemblies at the plasma membrane in the yeast Saccharomyces cerevisiae that mark endocytic sites. These structures, termed eisosomes (from the Greek 'eis', meaning into or portal, and 'soma', meaning body), are composed primarily of two cytoplasmic proteins, Pil1 and Lsp1. A plasma membrane protein, Sur7, localizes to eisosomes. These structures colocalize with sites of protein and lipid endocytosis, and their components genetically interact with known endocytic effectors. Loss of Pil1 leads to clustering of eisosome remnants and redirects endocytosis and endocytic effector proteins to these clusters.  相似文献   

19.
Dormitzer PR  Nason EB  Prasad BV  Harrison SC 《Nature》2004,430(7003):1053-1058
Non-enveloped virus particles (those that lack a lipid-bilayer membrane) must breach the membrane of a target host cell to gain access to its cytoplasm. So far, the molecular mechanism of this membrane penetration step has resisted structural analysis. The spike protein VP4 is a principal component in the entry apparatus of rotavirus, a non-enveloped virus that causes gastroenteritis and kills 440,000 children each year. Trypsin cleavage of VP4 primes the virus for entry by triggering a rearrangement that rigidifies the VP4 spikes. We have determined the crystal structure, at 3.2 A resolution, of the main part of VP4 that projects from the virion. The crystal structure reveals a coiled-coil stabilized trimer. Comparison of this structure with the two-fold clustered VP4 spikes in a approximately 12 A resolution image reconstruction from electron cryomicroscopy of trypsin-primed virions shows that VP4 also undergoes a second rearrangement, in which the oligomer reorganizes and each subunit folds back on itself, translocating a potential membrane-interaction peptide from one end of the spike to the other. This rearrangement resembles the conformational transitions of membrane fusion proteins of enveloped viruses.  相似文献   

20.
该文通过改进双向电泳方法克服了膜蛋白由于有疏水性而很难进入双向电泳第一相——等电聚焦电泳凝胶,以及由于从蔗糖密度梯度离心中分离得到的液泡前体富含干扰等电聚焦电泳效果的蔗糖等两大难点,成功地分离了通过蔗糖密度梯度离心分离得到的液泡前体蛋白,并使膜蛋白进入了双向电泳凝胶.双向电泳后分离到约200余个蛋白质点,用基质辅助激光解吸/电离飞行时间串联质谱(MS/MS)进行肽质量指纹谱分析,并通过数据库检索进行蛋白质鉴定与功能预测,分析的23个蛋白中有13个在数据库中没有找到相对应的吻合蛋白,查询到的10个吻合蛋白中有6个功能未知.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号