首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host recognition by toxigenic plant pathogens   总被引:1,自引:0,他引:1  
Certain fungal pathogens release host-selective (or host-specific) toxins (HST) as a host recognition factor during spore germination at the infection site on plants. Prior to penetration of the pathogen into its host, the released toxin specifically binds to a putative receptor on the host cells and initiates signaling mechanisms leading to pleiotropic effects on cells. Of these, the crucial one negates the general and inducible defense reactions of the cells. This is accomplished by a signal from the HSt, which is transduced through a path way at or near the step of plasma membrane modulation, which is directly or indirectly triggered by the HST. This mechanism operates even though the toxin may affect mitochondria or chloroplasts as the primary target organelle. The fungal spore is able to penetrate the so-called narcotized cell and completes the initial colonization of the host. The host recognition process may take place without necessitating host cell death, even in the case of perthophytic parasites. At the molecular level, HST-mediated recognition of the host by a pathogen requires strict stereochemical precision like a lock and key.  相似文献   

2.
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity’s most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.  相似文献   

3.
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4+ T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.  相似文献   

4.
Several bacterial pathogens make use of a specialized protein secretion system to inject effector proteins into host cells. This system, commonly referred to as type III secretion, is always associated with phenotypes related to intimate interactions between the pathogen and its respective host cells. The enteric pathogen Salmonella typhimurium utilizes a type III secretion system to invade nonphagocytic intestinal epithelial cells. Whereas the invasion-associated type III system of S. typhimurium has evolved to perform a specific function, many of the components of this system are conserved among the type III systems of other bacterial pathogens. This review will discuss the common and unique features of the S. typhimurium system in relation to the type III systems of other human pathogens. Topics discussed include the phenotypes associated with various type III systems, the genetic loci encoding these systems, the components of the type III secretion apparatus, the effector proteins and the mechanisms by which they enter host cells as well as the mechanisms used to regulate the expression of type III systems.  相似文献   

5.
Conventional plant breeding for resistance to pathogens, although successful, is in many cases still too slow to keep pace with pathogen adaptation, and suffers from the lack of genetic variability in cultivated varieties. Phytotoxins, because of their role in disease development, have been proposed as convenient markers for early screening of resistant genotypes and as selective agents for in vitro selection. The present review summarizes, firstly, the evidence for a genetic correlation between tolerance to toxins and resistance to pathogens, with particular reference to host-selective toxins (HST) and factors affecting early screening. There follows a discussion of results obtained from the use of phytotoxins for in vitro selection of resistant plants. The conclusion is drawn that this practice, while potentially useful in the case of HST, leads to contradictory results when ill-defined toxins or culture filtrates are used. Finally, prospects for future research are adumbrated.  相似文献   

6.
Photon emission of phagocytes in relation to stress and disease.   总被引:1,自引:0,他引:1  
E M Lilius  P Marnila 《Experientia》1992,48(11-12):1082-1091
Phagocytes, the first-line cells of the body's defence mechanisms against invading pathogens, kill microorganisms by means of lysosomal degradative enzymes and highly toxic reactive oxygen intermediates. The reactive oxygen compounds are produced, in a process called the 'respiratory burst', by the NADPH oxidase complex in plasma membranes, and by myeloperoxidase in phagolysosomes after degranulation. These processes generate electronically excited states which, on relaxation, emit photons, giving rise to phagocyte chemiluminescence (CL). This paper describes the conditions for the measurement of CL, and reviews the activity of phagocytes from individuals undergoing stress or disease. The capability of phagocytes to emit photons reflects remarkably well the pathophysiological state of the host. In many cases even the magnitude of the stress, the presence of a pathogen in the body, or the activity of the disease can be estimated. Physiological changes, e.g. in the reproductive cycle, can also be predicted.  相似文献   

7.
Phagocytes, the first-line cells of the body's defence mechanisms against invading pathogens, kill microorganisms by means of lysosomal degradative enzymes and highly toxic reactive oxygen intermediates. The reactive oxygen compounds are produced, in a process called the ‘respiratory burst’, by the NADPH oxidase complex in plasma membranes, and by myeloperoxidase in phagolysosomes after degranulation. These processes generate electronically excited states which, on relaxation, emit photons, giving rise to phagocyte chemiluminescence (CL). This paper describes the conditions for the measurement of CL, and reviews the activity of phagocytes from individuals undergoing stress or disease. The capability of phagocytes to emit photons reflects remarkably well the pathophysiological state of the host. In many cases even the magnitude of the stress, the presence of a pathogen in the body, or the activity of the disease can be estimated. Physiological changes, e.g. in the reproductive cycle, can also be predicted.  相似文献   

8.
Candida albicans represents one of the most prevalent species causing life-threatening fungal infections. Current treatments to defeat Candida albicans have become quite difficult, due to their toxic side effects and the emergence of resistant strains. Antimicrobial peptides (AMPs) are fascinating molecules with a potential role as novel anti-infective agents. However, only a few studies have been performed on their efficacy towards the most virulent hyphal phenotype of this pathogen. The purpose of this work is to evaluate the anti-Candida activity of the N-terminal 1–18 fragment of the frog skin AMP esculentin-1b, Esc(1–18), under both in vitro and in vivo conditions using Caenorhabditis elegans as a simple host model for microbial infections. Our results demonstrate that Esc(1–18) caused a rapid reduction in the number of viable yeast cells and killing of the hyphal population. Esc(1–18) revealed a membrane perturbing effect which is likely the basis of its mode of action. To the best of our knowledge, this is the first report showing the ability of a frog skin AMP-derived peptide (1) to kill both growing stages of Candida; (2) to promote survival of Candida-infected living organisms and (3) to inhibit transition of these fungal cells from the roundish yeast shape to the more dangerous hyphal form at sub-inhibitory concentrations.  相似文献   

9.
The identification of chemokines in blood platelets has strengthened our view of these cells as participants in immune host defense. Platelet chemokines representing prestored and rapidly releasable proteins may play a major role as first-line inflammatory mediators. This is evident from their capability to recruit early inflammatory cells such as neutrophil granulocytes and monocytes and even to exhibit direct antimicrobial activity. However, insight is growing that platelet chemokines may be also long-term regulators, e.g., by activating T lymphocytes, by modulating the formation of endothelium and even thrombocytopoiesis itself. This review deals with the individual and cooperative functionality of platelet chemokines, as well as their potential as a basis for therapeutic intervention in the pathology of inflammation, infection, allergy and tumors. Within this context, therapeutic strategies based on the use of antibodies, modified chemokines, chemokine-binding proteins and chemokine receptor antagonists as well as first clinical studies will be addressed.  相似文献   

10.
11.
MD2, a 160-residue accessory glycoprotein, is responsible for the recognition and binding of Gram-negative bacterial membrane component, lipopolysaccharide (LPS). Internalization of pathogen inside the mononuclear phagocytes has also been attributed to MD2 which leads to the clearance of pathogens from the host. However, not much is known about the segments in MD2 that are responsible for LPS interaction or internalization of pathogen inside the defense cells. A 16-residue stretch (MD54) from MD2 protein has been identified that possesses a short heptad repeat sequence and four cationic residues enabling it to participate in both hydrophobic and electrostatic interactions with LPS. An MD54 analog of the same size was also designed in which a leucine residue at a heptadic position was replaced with an alanine residue. MD54 but not its analog, MMD54 induced aggregation of LPS and aided in its internalization within THP-1 monocytes. Furthermore, MD54 inhibited LPS-induced nuclear translocation of NF-κB in PMA-treated THP-1 and TLR4/MD2/CD14-transfected HEK-293T cells and the production of pro-inflammatory cytokines. In addition, in in vivo experiments, MD54 showed marked protection and survival of mice against LPS-induced inflammation and death. Overall, we have identified a short peptide with heptad repeat sequence from MD2 that can cause aggregation of LPS and abet in its internalization within THP-1 cells, resulting in attenuation of LPS-induced pro-inflammatory responses in vitro and in vivo.  相似文献   

12.
During the last decade increasing attention has been directed towards the biochemical mechanisms responsible for the biological activity of phytotoxins. Studies on the mode of action of some non-host-selective phytotoxins, some following on from previous observations, have demonstrated a very specific interaction with particular components of the cell machinery, and have suggested the possible use of these phytotoxins as tools for the investigation of important biochemical processes. This review article reports and discusses results of studies carried out in the 1980s with seven non-host-selective fungal toxins: brefeldin A, cercosporin,Cercospora beticola toxin, fusicoccin, ophiobolins, tentoxin, and zinniol. Each of these interferes with the life of the host by interacting with a different biochemical target.  相似文献   

13.
Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.  相似文献   

14.
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB5 toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide–toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.  相似文献   

15.
Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens suppress this basal defense response by means of effectors that enable them to cause disease. With the secondary immune system, plants have gained the ability to recognize effector-induced perturbations of host targets through resistance proteins (RPs) that mediate a strong local defense response that stops pathogen growth. Both primary and secondary immune responses in plants depend on germ line-encoded PRRs and RPs. During induction of local immune responses, systemic immune responses also become activated, which predispose plants to become more resistant to subsequent pathogen attacks. This review gives an update on recent findings that have enhanced our understanding of plant innate immunity and the arms race between plants and their pathogens. Received 24 June 2007; received after revision 18 July 2007; accepted 15 August 2007  相似文献   

16.
Interferon-alpha (IFN-α) is a potent anti-viral cytokine, critical to the host immune response against viruses. IFN-α is first produced upon viral detection by pathogen recognition receptors. Following its expression, IFN-α embarks upon a complex downstream signalling cascade called the JAK/STAT pathway. This signalling pathway results in the expression of hundreds of effector genes known as interferon stimulated genes (ISGs). These genes are the basis for an elaborate effector mechanism and ultimately, the clearance of viral infection. ISGs mark an elegant mechanism of anti-viral host defence that warrants renewed research focus in our global efforts to treat existing and emerging viruses. By understanding the mechanistic role of individual ISGs we anticipate the discovery of a new “treasure trove” of anti-viral mediators that may pave the way for more effective, targeted and less toxic anti-viral therapies. Therefore, with the aim of highlighting the value of the innate type 1 IFN response in our battle against viral infection, this review outlines both historic and recent advances in understanding the IFN-α JAK/STAT pathway, with a focus on new research discoveries relating to specific ISGs and their potential role in curing existing and future emergent viral infections.  相似文献   

17.
Summary There are several types of mycorrhizal symbiosis (ectomycorrhiza, endomycorrhiza, ectendomycorrhiza), and the interfaces between the host-plant and the fungal symbiont have different organizations. The interfaces between the partners are always limited on the one side by the fungal plasmalemma and on the other side by the plasmalemma of the host plant or the perisymbiont membrane derived from it The cytoplasms of the partners are therefore separated by a mixed apoplast consisting of a fungal wall and a host wall or an apposition layer.  相似文献   

18.
Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, can be beneficial to the host by activating the innate immune system, or harmful, by inducing inflammation, disseminated intravascular coagulation, multiple organ failure, shock and often death. On the bacteria, and in host biological fluids and cells, LPS is never free but constantly attached to cognate-binding proteins. Understanding how LPS is transported and further recognized by sensors able to deliver a signal, or by inactivating molecules able to neutralize its biological effects, is an important goal. This review describes the large panel of peptides and proteins reported to associate with LPS, and provides information on their origin, their structure and the location of amino acid residues involved in their interaction with LPS. A better understanding of the mode of recognition of LPS by cognate proteins prompted many laboratories to design on a rational basis synthetic molecules which can be used to detect low amounts of endotoxin, or to act as efficient blockers of in vitro and in vivo responses to LPS.Received 15 January 2004; received after revision 20 February 2004; accepted 25 February 2004  相似文献   

19.
P G Fast  D W Murphy  S S Sohi 《Experientia》1978,34(6):762-763
Enzymically activated delta-endotoxin of Bacillus thuringiensis covalently bound to Sephadex beads, has the same effect on insect cells in tissue culture as free toxin. The effect is prevented by antitoxin antibody and heat denaturation and is not due to a nonspecific protein effect, the beads, or toxin released from the beads. The toxin, therefore, probably acts at the cell surface.  相似文献   

20.
Protein-O-mannosyltransferases (Pmt proteins) catalyse the addition of mannose to serine or threonine residues of secretory proteins. This modification was described first for yeast and later for other fungi, mammals, insects and recently also for bacteria. O-mannosylation depends on specific isoforms of the three Pmt1, 2 and 4 subfamilies. In fungi, O-mannosylation determines the structure and integrity of cell walls, as well as cellular differentiation and virulence. O-mannosylation of specific secretory proteins of the human fungal pathogen Candida albicans and of the bacterial pathogen Mycobacterium tuberculosis contributes significantly to virulence. In mammals and insects, Pmt proteins are essential for cellular differentiation and development, while lack of Pmt activity causes Walker-Warburg syndrome (muscular dystrophy) in humans. The susceptibility of human cells to certain viruses may also depend on O-mannosyl chains. This review focuses on the various roles of Pmt proteins in cellular differentiation, development and virulence. Received 6 September 2007; received after revision 3 October 2007; accepted 5 October 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号