首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
给定X,B∈Rn×m和正整数s,在集合W-1ASRn×n中寻找矩阵方程AX=B的解A,使得r(A)=s;当解集S1={A∈W-1ASRn×nAX=B}非空时,记m~=minA∈S1r(A),M~=maxA∈S1r(A),在S1中确定最大、最小秩解.  相似文献   

2.
一种复型矩阵方程AXB=C有解的充分条件是A∈Fm×s,B∈F2r×n,C∈Fm×n,且r(A)=r(B) =r(c)=r且Cr×rBr×(n-r)=Cr×(n-r),矩阵方程解的结构仍为导出复型矩阵方程的通解与复型矩阵方程一个解的和。  相似文献   

3.
本文考虑如下问题:问题Ⅰ(a)给定X∈Rn×p p,y∈Rm×p p,A=diag(λ1Ik1,λ2Ik2,…,λnIkn)∈Rp×p且k1 k2 … k1=p,λ1,…,λ1互异.求矩阵A,B∈Rm×n,使得AXA=BX, ATYA=BTy.问题Ⅰ(b)给定矩阵X∈Rm×p p,y∈Rn×p p,A=diag(λ1Ik1,λ2Ik2,…,λ1Ik1)∈Rp×p且k1 k2 … k1=p,λ1,…,λ1互异.求矩阵A,B∈Rm×n,使得AXA=BX, ATyA=BTy, YTAX=Ip,YTBX=A.问题Ⅱ给定A,B∈Rm×n,求[A,B]∈SAB,使得‖ [A,B]-[A,B]‖F=inf [A,B]∈s AB‖[A,B]-[A,B]‖ F,其中SAB是问题Ⅰ的解集合.借助于矩阵X,Y的奇异值分解给出了问题I的通解表达式,证明了问题Ⅱ的解存在唯一,并给出了问题Ⅱ的唯一解的显式表示.  相似文献   

4.
矩阵张量积数值半径的一个不等式和一个等式   总被引:2,自引:0,他引:2  
借助矩阵张量积和矩阵数值半径的性质,证明了不等式r(A1(×)…(×)Ak)≥∏ki=1r(Ai)和等式r(A(×)B)=r(B(×)A),其中A1,…,Ak,A,B∈L(U).同时,举例说明了不等式r(k(×)A)≤rk(A)不成立.而当A1,…,Ak为正规阵时,有r(A1(×)…(×)Ak)=∏ks=1r(As).  相似文献   

5.
令R∈Cm×m和S∈Cn×n是2个非平凡卷积矩阵,即R=R-1≠±Im,且S=S-1≠±In。如果一个矩阵A∈Cm×n满足RAS=A,则矩阵A称为(R,S)对称矩阵。本文首先分别给出了左右逆特征值问题的(R,S)对称矩阵解的可解条件和一般表达式;然后,给出了左右逆特征值问题相应的最佳逼近问题的(R,S)对称矩阵解。  相似文献   

6.
本文讨论了下列问题问题Ⅰ给定X∈R_r~(nxm),∧=diag(λ_1I_(k1)…λ_1I_(kr))且k_1+…+k_r=m,λ_1、λ_2…λ_r互异,r≤m,n.a)求A,B∈R~(n×n),使得AX=BX∧;b)求A,B∈SR~(nxn),使得AX=BX∧;c)求A,B∈R~(nxn),使得AX=BX∧,X~TBX=I_r;d)求A,B∈SR~(nxn),使得AX=BX∧,X~TBX=I_r.问题Ⅱ1)给定(?),求(?)使得2)给定(?),求(?),使得其中S_(AB(a,c))是问题Ⅰ(a),(c)的解的集合,而S_(AB(b,d))是问题Ⅰ(b)、(d)的解的集合。  相似文献   

7.
设α=(mn), β=(st)∈R2×1. α<=>βm n=s t,则"~"是平面上向量间的一个等价关系.令:S={A∈R2×2|(A)α,β∈R2×1,α~β(=)Aα~Aβ}.显然在矩阵乘法运算下S构成一个半群,讨论了S的格林关系.  相似文献   

8.
给出矩阵方程AX=B存在三对角中心对称解的充分必要条件,并且给出AX=B的特殊最小二乘解,即对任意给定A,B∈Rm×n,寻求三对角中心对称矩阵X(X∈Rn×n),使得‖AX-B‖最小.  相似文献   

9.
本文主要讨论分裂四元数矩阵方程AXA~H+BYB~H=C的反Hermite解,其中A∈Q_s~(m×n),B∈Q_s~(m×p),C∈Q_s~(m×m),X∈AHQ_s~(n×n),Y∈AHQ_s~(p×p).以分裂四元数矩阵的复表示、矩阵列拉直算子以及Moore-Penrose广义逆为工具,得到此矩阵方程有反Hermite解的充分必要条件及解的通解表达式.  相似文献   

10.
给定A∈Rm×n,B∈Rm×p,D∈Rm×m,设S1={(X,Y,Z)∈SRn×n×SRp×p×Rn×p|AXAT BYBT AZBT=D}, S2={(X,Z)∈SRn×n×Rn×p|AXAT AZBT BZTAT=D},求(X,Y,Z)∈S1使得‖X‖2 ‖Y‖2 ‖Z‖2=min及(X,Z)∈S2使得‖2‖2 ‖2‖2=min.本文运用矩阵对(A,B)的广义奇异值分解给出了集合S1,S2非空的充分必要条件及X,Y,Z的显式表示.  相似文献   

11.
证明了一类约束矩阵方程AX=D,(R(X)(∪) R(Ak1)),XB=D,(N(X)(∪)N(Bk2)),AXB=D,(R(X)(∪) R(Ak1),N(X)(∪)N(Bk2))有唯一解并给出其解的Cramer公式,其中A∈Cn×n,Ind(A)=k1,B∈Cm×m,Ind(B)=k2,D∈Cn×m.推广了求解约束线性方程组问题中的相关结论.经典的Cramer法则也是本文结论的特殊情形.  相似文献   

12.
对任意给定的矩阵A∈R^m×n,B∈n×s,C∈R^m×k,D∈R^k×s,E∈R^m×s,本文利用矩阵的拉直算子,Moore—Penrose(M—P)广义逆及Kronecker积,研究矩阵方程AXB+CYD=E的反对称最小二乘解,给出了解的表达式。并由此给出了该方程的反对称极小范数最小二乘解的表达式,同时给出了该方程有反对称解的充分必要条件及反对称解的表达式。  相似文献   

13.
设T=(V,A)是竞赛图。以△~ 、△~-表示T的最大出次、最大入次。p=|V|是T的点数。令R={υ|d~ (υ)=△},S={υ|d(υ)=△} 定理设T是竞赛图,则总存在r∈R,s∈S从r到s有长度为l的路(l=2,3,…p-1)。证明不妨设T不是正则竞赛图,并且p≥5。于是△~ ≥p/2,△≥p/2。任取 r∈R,s∈S,则T中总存在长度≤2的路P,若(r,s)∈A, 记σ(r)={υ|(r,υ)∈A},I(s)={υ|(υ,s)∈A} 若σ(r)∩I(s)≠φ,则存在从r到s的长度为2的路。  相似文献   

14.
设 J=[-0In I0n]In是n阶单位辛矩阵,若A∈C2n×2n满足AHA=I2n,AHJA=J,则称A为辛酉矩阵,所有2n阶辛酉阵的全体记为SUC2n×2n.令S={A∈SUC2n×2n|‖AY-Z‖=min,Y, Z∈C2n×p},本文考虑如下问题:问题Ⅰ给定X,B∈C2n×m,求A∈S使f(A)=‖AX-B‖=min.问题Ⅱ给定~A∈C22n×2n,求~A∈SE使得‖~A-~A‖=infA∈SE‖~A-A‖,其中SE是问题Ⅰ的解集合.本文给出了解集SE的通式及逼近解~A的表示式和一些有关的结果,并给出了相应的数值算法.  相似文献   

15.
研究了二阶Neumann边值问题{u″+f(t,u,u’)=s,t∈(0,1),u’(0)=u’(1)=0解的个数与参数s的关系,其中f∈C([0,1]×R2,R),s∈R。运用上下解方法及拓扑度理论,获得存在常数s1∈R,当ss1时,该问题至少有两个解。  相似文献   

16.
关于除环上矩阵秩的几个等式   总被引:1,自引:0,他引:1  
推广和改进了文[2]的一些结果,建立了除环K上关于幂等矩阵秩的几个等式:(i)设A,B∈Pn(K),则r(A+B-AB)=r-r(B)=r(B)+r[AB B0]-r(B)=r(B)+r[(I-B)A(I-B)];(ii)设c}K≠2,A,B∈Pn(K),则(1)r(A+B)=r[AB B0]-r(B);(2)r(A+B)=r(B)+r[(I-B)A(I-B)];(iii)设chK=2,A,B∈Pn(K),则 r(A+B)=r(A+AB)+r(B+AB).并得到几个推论.  相似文献   

17.
对于给定的A∈Ct×m,B∈Ct×n,C∈Cp×m,D∈Cn×q,E∈Cp×q,通过奇异值分解和广义奇异值分解,我们得到了AX=B,XCD=E有广义自反解的充要条件,给出了一般解的表达式,在此基础上我们给出了最佳逼近解的表达式。  相似文献   

18.
该文的目的就是要计算正规三角矩阵环T=(RO mS)上的高阶导子.设R,S为带有单位元的环且M为(R,S)双模.如果将此高阶导子记为d(r,m,s),则它就有如下形式:dn(r,m,s)=(δnR(r),τn(m),δnS(s))+n-1∑i=0[(δiR(r),τi(m),δiS(s)),mn_iE12].经过计算,就可以得到δR={δnR}n∈N与δs={δnS}n∈N分别为R和S上的高阶导子,并且映射集τ={τn}n∈N与(δR,δS)相关.  相似文献   

19.
令M-1记所有n×n逆M矩阵的集合,Sk(k>1)记所有实矩阵其每个k×k主子矩阵都是逆M矩阵的集合.首先证得如果A,B∈M-1分别是上、下Hessenberg矩阵,则对任意H1,H2∈S2,AB和(AH1)(BH2)都是三对角线矩阵(因而是完全非负矩阵);其次证得如果A=(aij),B=(bij)(M-1满足aji=bij=0,i-j≥3,则对任意H1,H2∈S3,AB和(AH1)(BH2)都是五对角线逆M矩阵.  相似文献   

20.
关于矩阵张量积数值半径的两个问题   总被引:2,自引:0,他引:2  
借助矩阵张量积和矩阵数值半径的性质,证明了不等式r(A1 … Ak)≥ ki=1r(Ai)和等式r(A B)=r(B A),其中A1,…,Ak,A,B∈L(U).同时,举例说明了不等式r(k A)≤rk(A)不成立,而当A1,…,Ak为正规阵时,有r(A1 … Ak)= ks=1r(As).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号