首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nested chromosomal deletions induced with retroviral vectors in mice   总被引:9,自引:0,他引:9  
Su H  Wang X  Bradley A 《Nature genetics》2000,24(1):92-95
Chromosomal deletions, especially nested deletions, are major genetic tools in diploid organisms that facilitate the functional analysis of large chromosomal regions and allow the rapid localization of mutations to specific genetic intervals. In mice, well-characterized overlapping deletions are only available at a few chromosomal loci, partly due to drawbacks of existing methods. Here we exploit the random integration of a retrovirus to generate high-resolution sets of nested deletions around defined loci in embryonic stem (ES) cells, with sizes extending from a few kilobases to several megabases. This approach expands the application of Cre-loxP-based chromosome engineering because it not only allows the construction of hundreds of overlapping deletions, but also provides molecular entry points to regions based on the retroviral tags. Our approach can be extended to any region of the mouse genome.  相似文献   

2.
We have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a(-/-) mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration with loss of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF. Insertional mutagenesis by the latent retrovirus was synergistic with loss of Cdkn2a expression, as indicated by a marked acceleration in the development of both myeloid and lymphoid tumors. We isolated 747 unique sequences flanking retroviral integration sites and mapped them against the mouse genome sequence databases from Celera and Ensembl. In addition to 17 insertions targeting gene loci known to be cancer-related, we identified a total of 37 new common insertion sites (CISs), of which 8 encode components of signaling pathways that are involved in cancer. The effectiveness of large-scale insertional mutagenesis in a sensitized genetic background is demonstrated by the preference for activation of MAP kinase signaling, collaborating with Cdkn2a loss in generating the lymphoid and myeloid tumors. Collectively, our results show that large-scale retroviral insertional mutagenesis in genetically predisposed mice is useful both as a system for identifying genes underlying cancer and as a genetic framework for the assignment of such genes to specific oncogenic pathways.  相似文献   

3.
Pigmentary glaucoma is a significant cause of human blindness. Abnormally liberated iris pigment and cell debris enter the ocular drainage structures, leading to increased intraocular pressure (IOP) and glaucoma. DBA/2J (D2) mice develop a form of pigmentary glaucoma involving iris pigment dispersion (IPD) and iris stromal atrophy (ISA). Using high-resolution mapping techniques, sequencing and functional genetic tests, we show that IPD and ISA result from mutations in related genes encoding melanosomal proteins. IPD is caused by a premature stop codon mutation in the Gpnmb (GpnmbR150X) gene, as proved by the occurrence of IPD only in D2 mice that are homozygous with respect to GpnmbR150X; otherwise, similar D2 mice that are not homozygous for GpnmbR150X do not develop IPD. ISA is caused by the recessive Tyrp1b mutant allele and rescued by the transgenic introduction of wildtype Tyrp1. We hypothesize that IPD and ISA alter melanosomes, allowing toxic intermediates of pigment production to leak from melanosomes, causing iris disease and subsequent pigmentary glaucoma. This is supported by the rescue of IPD and ISA in D2 eyes with substantially decreased pigment production. These data indicate that pigment production and mutant melanosomal protein genes may contribute to human pigmentary glaucoma. The fact that hypopigmentation profoundly alleviates the D2 disease indicates that therapeutic strategies designed to decrease pigment production may be beneficial in human pigmentary glaucoma.  相似文献   

4.
Identification of a cluster of X-linked imprinted genes in mice   总被引:5,自引:0,他引:5  
  相似文献   

5.
Imprinted genes are expressed from only one of the parental alleles and are marked epigenetically by DNA methylation and histone modifications. The paternally expressed gene insulin-like growth-factor 2 (Igf2) is separated by approximately 100 kb from the maternally expressed noncoding gene H19 on mouse distal chromosome 7. Differentially methylated regions in Igf2 and H19 contain chromatin boundaries, silencers and activators and regulate the reciprocal expression of the two genes in a methylation-sensitive manner by allowing them exclusive access to a shared set of enhancers. Various chromatin models have been proposed that separate Igf2 and H19 into active and silent domains. Here we used a GAL4 knock-in approach as well as the chromosome conformation capture technique to show that the differentially methylated regions in the imprinted genes Igf2 and H19 interact in mice. These interactions are epigenetically regulated and partition maternal and paternal chromatin into distinct loops. This generates a simple epigenetic switch for Igf2 through which it moves between an active and a silent chromatin domain.  相似文献   

6.
Liu P  Wang Y  Vikis H  Maciag A  Wang D  Lu Y  Liu Y  You M 《Nature genetics》2006,38(8):888-895
We performed a whole-genome association analysis of lung tumor susceptibility using dense SNP maps ( approximately 1 SNP per 20 kb) in inbred mice. We reproduced the pulmonary adenoma susceptibility 1 (Pas1) locus identified in previous linkage studies and further narrowed this quantitative trait locus (QTL) to a region of less than 0.5 Mb in which at least two genes, Kras2 (Kirsten rat sarcoma oncogene 2) and Casc1 (cancer susceptibility candidate 1; also known as Las1), are strong candidates. Casc1 knockout mouse tumor bioassays showed that Casc1-deficient mice were susceptible to chemical induction of lung tumors. We also found three more genetic loci for lung adenoma development. Analysis of one of these candidate loci identified a previously uncharacterized gene Lasc1, bearing a nonsynonymous substitution (D102E). We found that the Lasc1 Glu102 allele preferentially promotes lung tumor cell growth. Our findings demonstrate the prospects for using dense SNP maps in laboratory mice to refine previous QTL regions and identify genetic determinants of complex traits.  相似文献   

7.
Wildtype Kras2 can inhibit lung carcinogenesis in mice   总被引:13,自引:0,他引:13  
Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal-regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.  相似文献   

8.
Basal cell carcinomas in mice overexpressing Gli2 in skin   总被引:17,自引:0,他引:17  
  相似文献   

9.
Haploinsufficiency of protamine-1 or -2 causes infertility in mice   总被引:22,自引:0,他引:22  
Protamines are the major DNA-binding proteins in the nucleus of sperm in most vertebrates and package the DNA in a volume less than 5% of a somatic cell nucleus. Many mammals have one protamine, but a few species, including humans and mice, have two. Here we use gene targeting to determine if the second protamine provides redundancy to an essential process, or if both protamines are necessary. We disrupted the coding sequence of one allele of either Prm1 or Prm2 in embryonic stem (ES) cells derived from 129-strain mice, and injected them into blastocysts from C57BL/6-strain mice. Male chimeras produced 129-genotype sperm with disrupted Prm1 or Prm2 alleles, but failed to sire offspring carrying the 129 genome. We also found that a decrease in the amount of either protamine disrupts nuclear formation, processing of protamine-2 and normal sperm function. Our studies show that both protamines are essential and that haploinsufficiency caused by a mutation in one allele of Prm1 or Prm2 prevents genetic transmission of both mutant and wild-type alleles.  相似文献   

10.
11.
Cardiac defects and renal failure in mice with targeted mutations in Pkd2   总被引:13,自引:0,他引:13  
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement to form a null allele; and a true null mutation (WS183; hereafter denoted Pkd2-). We examined these mutations to understand the function of polycystin-2, the protein product of Pkd2, and to provide evidence that kidney and liver cyst formation associated with Pkd2 deficiency occurs by a two-hit mechanism. Pkd2-/- mice die in utero between embryonic day (E) 13.5 and parturition. They have structural defects in cardiac septation and cyst formation in maturing nephrons and pancreatic ducts. Pancreatic ductal cysts also occur in adult Pkd2WS25/- mice, suggesting that this clinical manifestation of ADPKD also occurs by a two-hit mechanism. As in human ADPKD, formation of kidney cysts in adult Pkd2WS25/- mice is associated with renal failure and early death (median survival, 65 weeks versus 94 weeks for controls). Adult Pkd2+/- mice have intermediate survival in the absence of cystic disease or renal failure, providing the first indication of a deleterious effect of haploinsufficiency at Pkd2on long-term survival. Our studies advance our understanding of the function of polycystin-2 in development and our mouse models recapitulate the complex human ADPKD phenotype.  相似文献   

12.
13.
The composite structure of the mammalian skull, which forms predominantly via intramembranous ossification, requires precise pre- and post-natal growth regulation of individual calvarial elements. Disturbances of this process frequently cause severe clinical manifestations in humans. Enhanced DNA binding by a mutant MSX2 homeodomain results in a gain of function and produces craniosynostosis in humans. Here we show that Msx2-deficient mice have defects of skull ossification and persistent calvarial foramen. This phenotype results from defective proliferation of osteoprogenitors at the osteogenic front during calvarial morphogenesis, and closely resembles that associated with human MSX2 haploinsufficiency in parietal foramina (PFM). Msx2-/- mice also have defects in endochondral bone formation. In the axial and appendicular skeleton, post-natal deficits in Pth/Pthrp receptor (Pthr) signalling and in expression of marker genes for bone differentiation indicate that Msx2 is required for both chondrogenesis and osteogenesis. Consistent with phenotypes associated with PFM, Msx2-mutant mice also display defective tooth, hair follicle and mammary gland development, and seizures, the latter accompanied by abnormal development of the cerebellum. Most Msx2-mutant phenotypes, including calvarial defects, are enhanced by genetic combination with Msx1 loss of function, indicating that Msx gene dosage can modify expression of the PFM phenotype. Our results provide a developmental basis for PFM and demonstrate that Msx2 is essential at multiple sites during organogenesis.  相似文献   

14.
15.
Glaucomas are a major cause of blindness. Visual loss typically involves retinal ganglion cell death and optic nerve atrophy subsequent to a pathologic elevation of intraocular pressure (IOP). Some human glaucomas are associated with anterior segment abnormalities such as pigment dispersion syndrome (PDS) and iris atrophy with associated synechiae. The primary causes of these abnormalities are unknown, and their aetiology is poorly understood. We recently characterized a mouse strain (DBA/2J) that develops glaucoma subsequent to anterior segment changes including pigment dispersion and iris atrophy. Using crosses between mouse strains DBA/2J (D2) and C57BL/6J (B6), we now show there are two chromosomal regions that contribute to the anterior segment changes and glaucoma. Progeny homozygous for the D2 allele of one locus on chromosome 6 (called ipd) develop an iris pigment dispersion phenotype similar to human PDS. ipd resides on a region of mouse chromosome 6 with conserved synteny to a region of human chromosome 7q that is associated with human PDS. Progeny homozygous for the D2 allele of a different locus on chromosome 4 (called isa) develop an iris stromal atrophy phenotype (ISA). The Tyrpl gene is a candidate for isa and likely causes ISA via a mechanism involving pigment production. Progeny homozygous for the D2 alleles of both ipd and isa develop an earlier onset and more severe disease involving pigment dispersion and iris stromal atrophy.  相似文献   

16.
Age-related macular degeneration (AMD) is the most common form of irreversible blindness in developed countries. Variants in the factor H gene (CFH, also known as HF1), which encodes a major inhibitor of the alternative complement pathway, are associated with the risk for developing AMD. Here we test the hypothesis that variation in genes encoding other regulatory proteins of the same pathway is associated with AMD. We screened factor B (BF) and complement component 2 (C2) genes, located in the major histocompatibility complex class III region, for genetic variation in two independent cohorts comprising approximately 900 individuals with AMD and approximately 400 matched controls. Haplotype analyses identify a statistically significant common risk haplotype (H1) and two protective haplotypes. The L9H variant of BF and the E318D variant of C2 (H10), as well as a variant in intron 10 of C2 and the R32Q variant of BF (H7), confer a significantly reduced risk of AMD (odds ratio = 0.45 and 0.36, respectively). Combined analysis of the C2 and BF haplotypes and CFH variants shows that variation in the two loci can predict the clinical outcome in 74% of the affected individuals and 56% of the controls. These data expand and refine our understanding of the genetic risk for AMD.  相似文献   

17.
Pulmonary adenoma susceptibility 1 (Pas1) is the major mouse lung cancer susceptibility locus on chromosome 6 (ref. 1). Kras2 is a common target of somatic mutation in chemically induced mouse lung tumors and is a candidate Pas1 gene. M. spretus mice (SPRET/Ei) carry a Pas1 resistance haplotype for chemically induced lung tumors. We demonstrate that the SPRET/Ei Pas1 allele is switched from resistance to susceptibility by fixation of the parental origin of the mutant Kras2 allele. This switch correlates with low expression of endogenous Kras2 in SPRET/Ei. We propose that the Pas1 modifier effect is due to Kras2, and that a sensitive balance between the expression levels of wild-type and mutant alleles determines lung tumor susceptibility. These data demonstrate that cancer predisposition should also be considered in the context of somatic events and could have major implications for the design of human association studies to identify cancer susceptibility genes.  相似文献   

18.
19.
We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.  相似文献   

20.
The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine and behavioural responses to stress, and the related hormone urocortin (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2. These receptors may exhibit distinct functions due to unique tissue distribution and pharmacology. Crhr-null mice have defined central functions for Crhr1 in anxiety and neuroendocrine stress responses. Here we generate Crhr2-/- mice and show that Crhr2 supplies regulatory features to the hypothalamic-pituitary-adrenal axis (HPA) stress response. Although initiation of the stress response appears to be normal, Crhr2-/- mice show early termination of adrenocorticotropic hormone (Acth) release, suggesting that Crhr2 is involved in maintaining HPA drive. Crhr2 also appears to modify the recovery phase of the HPA response, as corticosterone levels remain elevated 90 minutes after stress in Crhr2-/- mice. In addition, stress-coping behaviours associated with dearousal are reduced in Crhr2-/- mice. We also demonstrate that Crhr2 is essential for sustained feeding suppression (hypophagia) induced by Ucn. Feeding is initially suppressed in Crhr2-/- mice following Ucn, but Crhr2-/- mice recover more rapidly and completely than do wild-type mice. In addition to central nervous system effects, we found that, in contrast to wild-type mice, Crhr2-/- mice fail to show the enhanced cardiac performance or reduced blood pressure associated with systemic Ucn, suggesting that Crhr2 mediates these peripheral haemodynamic effects. Moreover, Crhr2-/- mice have elevated basal blood pressure, demonstrating that Crhr2 participates in cardiovascular homeostasis. Our results identify specific responses in the brain and periphery that involve Crhr2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号