首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
掺杂金属离子对磷酸铁锂结构及性能的影响   总被引:1,自引:0,他引:1  
为改善磷酸铁锂的电化学性能,采用掺杂金属离子的方法,通过高温固相反应合成了一系列Li1-xMxFePO4(M=Mg2+、Al3+、Cr3+)掺杂复合试样,利用XRD、恒电流充放电等方法研究了金属阳离子的种类和用量对材料的晶体结构以及电化学性能的影响.结果表明,煅烧温度、掺杂元素的种类和用量对复合试样电化学性能均有较大影响,在煅烧温度为700 ℃下所得Li0.98Al0.02FePO4复合试样的电化学性能最佳.  相似文献   

2.
介绍了一种将石墨烯(Graphite)引入锂离子电池正极材料磷酸铁锂(LiFePO_4)中获得LiFePO_4/graphite复合材料的制备方法。首先以碳酸锂、草酸亚铁、磷酸氢二铵和葡萄糖为原材料,采用高温固相法合成了碳包覆的LiFePO_4前躯体,再通过固相粉体混合的工艺加入不同百分比的石墨烯,制备出磷酸铁/石墨烯锂离子电池正极复合材料;对所制备的复合材料组装成纽扣电池进行性能测试;结果表明:复合材料的电化学性能显著提高,在0.1C放电倍率条件下,LiFePO_4+1wt%graphite复合材料的首次放电容量从LiFePO_4基体材料的131.75mAh/g提高到146.51mAh/g,LiFePO_4+1wt%graphite复合材料的充电性能和放电性能分别提高了5.8%和4.8%。  相似文献   

3.
分别以乙醇、乙二醇以及丙三醇/水为溶剂,采用溶剂热法合成橄榄石结构的磷酸亚铁锂(LiFePO4)。运用XRD,SEM和FTIR等手段,对产物晶体结构、颗粒形貌和表面微观结构进行表征,探讨溶剂热合成LiFePO4时不同溶剂对产物形貌和结构的影响,同时运用恒流充放电测试和循环伏安方法对所得产物的电化学性能进行研究。研究结果表明:以乙二醇为溶剂合成的LiFePO4呈均匀片状结构,具有粒度小、厚度薄的特点,这种结构缩短了锂离子的扩散距离,有利于电化学性能的提高,其0.1C倍率放电比容量达到161.7 mA.h/g,1C倍率放电时容量仍保持132.6 mA.h/g;在0.1C倍率下,50次循环后容量保持率为98.02%。  相似文献   

4.
采用一步固相法合成碳包覆W掺杂Li1-xWxFePO4/C.结果表明:合成产物具有完整的橄榄石型LiFePO4晶体结构,颗粒尺寸为2~5μm;当W的掺入量为0.02摩尔分数时具有最好的倍率放电性能和循环性;在0.1 C倍率充放电时具有153.8 mA.h/g的放电比容量;在1 C倍率充放电时,具有135.7 mA.h/g的放电比容量.  相似文献   

5.
磷酸铁锂因为其稳定、安全、环保以及高性能,被认为是一种很有希望的锂电池电极材料。本文中,报道了一种制备磷酸铁锂纳米棒状材料的方法。经分析表明,得到的材料纯度较高,形貌生长较好。在电化学性能测试中表现出了较好的比容量和循环特性,具备一定应用潜力。  相似文献   

6.
通过向高温固相法制备的钛酸锂(Li_4Ti_5O_(12))掺杂Al~(3+)、Zr~(4+)、AlF_3进行离子掺杂改性,探究离子种类对材料性能的影响。采用XRD、恒流充放电、循环伏安以及交流阻抗等方法对4种样品进行结构和电化学性能表征。结果表明,3种离子的掺杂均可以提高(Li_4Ti_5O_(12))材料的电化学性能,其中AlF_3掺杂后的性能最好,比容量提升3倍以上,经200圈循环后比容量未出现明显衰减,容量保持率在95%以上。  相似文献   

7.
正极材料LiFePO4的电化学性能的改进   总被引:9,自引:1,他引:9  
采用固相反应法合成了LiFePO4正极材料,在20mA/g的电流密度下进行恒电流充放电,比容量可以达到135mAh/g,为了改进LiFePO4的性能,提高其高倍率性能,尝试了两种途径并合成出Li(Fe0.8Mn0.2)PO4和LiFePO4/C。低倍率充放电实验得出的两个样品的比容量分别可达到145mAh/g和144mAh/g,而且表现出了良好的循环性能和平坦的电压平台,以上两种方法制备出的材料均具有较好的高倍率性能。  相似文献   

8.
采用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池性能测试仪等系统分析了Pechini法合成的LiMxMn2-xO4(M=La,Ce,Nd;x=0,0.02,0.03)的结构、形貌、首次充放电及循环稳定性等.结果表明;除LiCe0.03Mn1.97O4、LiNd0.03Mn1.97O4样品含有微量杂质相(CeO2或Nd2O3)外,其他样品均具有纯的尖晶石型LiMn2O4结构;样品呈规则的球形或近球形,粒径为1.0~2.0μm;采用适量的稀土掺杂可显著提高LiMn2O4样品的首次充放电和循环稳定性能,LiLa0.02Mn1.97O4样品的首次放电容量为123.3 mAh/g,经30次循环充放电后的容量仍保持在112.8 mAh/g,容量保持率为91.5%,远高于相同条件下未掺杂样品的容量保持率.  相似文献   

9.
利用溶剂挥发结合高温热聚合法制备了氮掺杂多孔碳(NPC)材料,并通过SEM、TEM、TG、N_2吸附-脱附、XPS等表征手段对样品的微观形貌结构和元素组成进行了分析.结果表明,氮元素掺杂明显增加材料的比表面积和孔体积,当制备的氮掺杂多孔碳材料的含氮量为4.2%(原子分数)时,它的比表面积高达422.0m~2/g高于没有氮掺杂样品的301.1m~2/g.此外,采用循环伏安、恒电流充放电和交流阻抗对NPC材料的电化学性能进行了深入研究.测试结果表明氮元素掺杂能够明显增加材料的比电容量,降低材料的内阻,极大提高碳材料的电化学性能.在0.5A/g的电流密度下,通过氮元素掺杂使得材料的比电容从83.8F/g提高至162.8F/g,内阻值从1.39Ω降低至0.47Ω;并且所得的氮掺杂多孔碳样品具有良好的倍率性能和循环稳定性.  相似文献   

10.
锂离子电池正极材料Li1-xVxFePO4/C的制备及电化学性能   总被引:1,自引:0,他引:1  
采用高温固相法合成了Li1-xVxFePO4/C(x=0,0.01,0.02,0.03,0.04,0.05,0.10)锂离子电池正极材料,通过XRD,SEM,CV,EIS和恒流充放实验研究了不同掺杂量对产物结构和电化学性能的影响。结果表明,少量V的掺杂未影响到LiFePO4的晶体结构,但显著改善了其电化学性能。其中,Li0.98V0.02FePO4/C材料以0.1 C倍率放电时,首次放电容量达到160.9 mAh·g^-1,且循环性能良好。  相似文献   

11.
由PAM合成磷酸亚铁锂/碳及其充放电性能研究   总被引:5,自引:1,他引:5  
以聚丙烯酰胺(PAM)为碳源,用固相法于不同温度下合成磷酸亚铁锂/碳,并组装成模拟电池测试电化学性能。在O.1mA/cm^2的电流密度下,625℃合成的样品第10个循环的放电容量达到110mAh/g,80个循环后仍能保持初始放电容量。发现在实验的温度区间内,磷酸亚铁锂晶粒度值的对数与反应温度值的负倒数成正比;另外,随反应温度的升高,FT—IR谱中1090、1055cm^-1位置附近的两个峰呈分裂趋势。样品的颗粒大小不均一,这与球磨法的特点有关,初步认为样品中的颗粒是多晶结构。  相似文献   

12.
以硫酸亚铁、磷酸、氢氧化锂为主要原料,采用水热法合成纳米级LiFePO4,探讨了添加表面活性剂以及掺杂对材料性能的影响。通过XRD及扫描电镜对其晶体结构和表面形貌进行了表征,并测试了材料的循环伏安、交流阻抗、恒电流充放电等性能。研究表明,通过添加表面活性剂(十二酸)可有效减小样品粒径,其首次放电比容量(0.2C)比未添加十二酸时提高了17.6%;通过掺杂Mg2+可有效提高样品电导率,其首次放电比容量(0.2C)比未掺杂时提高了30.5%。  相似文献   

13.
Lithium iron phosphate coated with carbon (LiFePO4/C) was synthesized by improved solid-state reaction using comparatively lower temperature and fewer sintering time. The carbon came from citric acid, which acted as a new carbon source. It was characterized by thermogravimetry and differential thermal analysis (TG/DTA), X ray diffractometer (XRD), Element Analysis (EA) and Scanning electron microscope (SEM). We also studied the electrochemical properties of the material. The first discharge capacity of the LiFePO4/C is 121 mAh·g−1 at 10 mA·g−1, at room temperature. When the current density increased to 100 mA·g−1, the first discharge capacity decreased to 110 mAh·g−1 and retained 95% of the initial capacity after 100 cycles. The LiFePO4/C obtained shows a good electrochemical capacity and cycle ability at a large current density. Foundation item: Supported by the National Natural Science Foundation of China (20071026) Biography: ZHOU Xin-wen (1980-), male, Master, research direction: inorganic material chemistry.  相似文献   

14.
LiFePO4(LFP) nanobars,microplates and nanorods have been selectively synthesized via a solvothermal method in a water-ethylene glycol(EG) binary solvent with H3PO4,LiOH·H2O,and FeSO4·7H2O as starting materials.The morphology and size of the as-obtained LFP products can be deliberately controlled by varying the volume ratio of EG to water.The formation mechanism and electrochemical properties of different LFP morphologies have been investigated.With carbon coating,the Li-ion diffusion coefficients of LFP nanorods,nanobars and micro-plates are 2.58×10-9,2.91×10-10,and 7.22×10-10 cm2 s-1,respectively.For the carbon-coated nanorods,excellent rate capability and cyclability were attained.At 5 C,the capacity was 141 mAh g-1 for the first cycle and maintained 120 mAh g-1 after 100 cycles;at 10 C,the capacity was still as high as 132 mAh g-1.  相似文献   

15.
磷酸亚铁锂的合成及充放电性能研究   总被引:2,自引:2,他引:2  
使用固相合成法在不同温度下合成磷酸亚铁锂.以它为正极活性物质组装成模拟电池测试充放电性能.使用XRD和IR表征样品.测试结果表明磷酸亚铁锂电池具有平稳的放电平台,良好的循环性能.在0.05mA/cm^2的电流密度下,600℃合成的样品初始放电容量达到90mAh/g,第10个循环的放电容量达到100mAh/g,80个循环后放电容量仍保持初始容量的97%以上,表明它具有优秀的循环性能.500℃合成的样品中有杂相存在,700℃合成的样品的晶粒度过大,这两个因素都可能使放电容量降低.在本实验条件下,600℃是较佳合成温度.  相似文献   

16.
文章以微米级氧化铁为原料,通过前驱体预处理合成LiFePO4/C正极材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等手段对合成的磷酸铁锂材料结构和微观形貌进行表征,考察了不同球磨时间对浆料粒径的影响,分析了前驱体预处理对合成产物性能提升的原因。结果表明,以微米氧化铁为原料,经过预处理后制备得到的LiFePO4/C正极材料的电化学性能具有明显改善,0.2C和1C条件下,放电容量较之前驱体未处理样品分别提高了22.5%和27.3%,合成样品性能改善的主要原因在于前驱体预处理降低了二次团聚体粒径。  相似文献   

17.
通过原位聚合方法制备了聚吡咯(PPy)/磷酸铁锂(LiFePO4)复合材料.傅立叶红外光谱测试表明PPy与LiFePO4之间发生了相互作用;采用扫描电镜观察了PPy在LiFePO4表面的分布情况;采用四探针法、电化学阻抗法及恒电流充放电法测试了复合材料的性能.结果表明:PPy的质量分数为4.69%的PPy/LiFePO4复合材料具有最佳的电化学性能,最小电荷转移电阻为98.83Ω,最大交换电流为0.256 mA,首次放电容量达到154.34 mAh/g,平台容量和平台率分别为133.48 mAh/g和86.48%,并且具有较好的循环性能及倍率性能.  相似文献   

18.
微波合成锂离子电池正极复合材料LiFePO4/C电化学性能   总被引:7,自引:0,他引:7  
采用微波合成技术合成锂离子电池正极材料LiFePO4,并进行碳掺杂,合成出复合材料LiFePO4/C.通过XRD,SEM和恒电流充放电实验,研究了材料结构形貌和电化学性能.结果表明,掺碳量4%时,采用40mA/g进行充放电,材料比容量可以达到109mAh/g,高倍率性能也有一定程度的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号