首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
点蚀是不锈钢的主要腐蚀类型之一, 常用点蚀电位来评价不锈钢腐蚀的难易程度. 点蚀电位会受到多方面因素的影响. 基于不锈钢的元素成分和工艺参数, 采用支持向量回归(support vector regression, SVR)算法建立了预测点蚀电位的模型. 结果表明: 独立测试集的相关系数达到 0.97, 均方根误差(root mean square error, RMSE)仅为 0.07; 通过 Pearson 相关分析和敏感性分析, 元素 Cr、Mo 的含量和温度对点蚀电位的影响较大; 当存在少量稀土元素时可以提高不锈钢的抗腐蚀能力.  相似文献   

2.
采用电化学测试技术与化学浸泡实验相结合,对比研究了409L和430铁素体不锈钢热轧板材耐点蚀和耐晶间腐蚀的能力.结果表明:409L不锈钢的击穿电位与保护电位的差小、钝化膜的修复能力较强,表现为小尺度的浅点蚀孔;430不锈钢的击穿电位较高,耐点蚀能力高于409L不锈钢,但430不锈钢热轧态的条带组织有明显的腐蚀微电池效应,表现为比较严重的全面腐蚀;409L不锈钢含Cr量低,且其热轧态未经过稳定化处理,使得409L不锈钢耐晶间腐蚀能力劣于430不锈钢.经微观分析:409L不锈钢为沿着基体等轴晶界的典型晶间腐蚀形貌特征,而430不锈钢在轧向碳化物(M23C6)与基体的相界面上呈现分层腐蚀痕迹.  相似文献   

3.
超级13Cr马氏体不锈钢在CO_2 及H_2 S/CO_2 环境中的腐蚀行为   总被引:5,自引:0,他引:5  
在模拟油田腐蚀环境中,通过高温、高压、CO2和H2S/CO2腐蚀实验及电化学测试,研究超级13Cr马氏体不锈钢的腐蚀行为.结果表明:在CO2腐蚀环境中,随着温度的升高,超级13Cr的均匀腐蚀速率呈稍微上升的趋势,点蚀轻微;在H2S、CO2共存条件下,超级13Cr的均匀腐蚀速率变化不大,点蚀严重,当Cl-的质量浓度为160g.L-1时,其最大点蚀深度可达28μm.超级13Cr的点蚀电位明显高于普通13Cr的点蚀电位,温度升高、Cl-的质量浓度增大和H2S气体的存在降低了超级13Cr的点蚀电位,而CO2对超级13Cr的点蚀电位影响不大;在N2、CO2环境中,超级13Cr的回复电位都在钝化区间,且回复电位较高,具有良好的再钝化能力.H2S气体的存在同样使超级13Cr的回复电位和点蚀电位显著降低.  相似文献   

4.
通过中心复合设计试验法设计试验,结合动电位极化曲线和电化学阻抗谱的测量以及氧化膜形貌观察和成分测量,研究了温度(30~350℃)、Cl-质量浓度(10~1000μg·L-1)和溶解氧质量浓度(0~200μg·L-1)3种因素对压水堆一回路主管道316L不锈钢电化学腐蚀性能的影响.结果表明:温度是影响316L不锈钢电化学腐蚀性能最显著的因素,温度越高,腐蚀电流密度越大,点蚀电位越低;Cl-浓度和溶解氧浓度对316L不锈钢电化学腐蚀性能的影响与温度密切相关,温度较低时(T<150℃),Cl-浓度和溶解氧浓度均对316L腐蚀电流密度几乎无影响,但点蚀电位却随Cl-浓度增加和溶解氧浓度的降低而降低;温度较高时,分别为T>130℃和T>150℃,Cl-浓度和溶解氧浓度均对316L点蚀电位几乎无影响,但腐蚀电流密度却随Cl-和溶解氧的浓度增加而显著增加,腐蚀加剧.电化学阻抗谱的测量和氧化膜形貌的观察也进一步验证了上述试验结果.  相似文献   

5.
以含低熔点元素Cu和Sn的超纯165%(质量分数)Cr铁素体不锈钢为实验材料,通过在35℃恒温6%(质量分数)FeCl3溶液中对实验钢进行浸泡腐蚀实验,并采用三电极体系测定实验钢的极化曲线,初步研究了晶粒尺寸对这种铁素体不锈钢耐蚀性能的影响.实验中,采用经典的失重法计算腐蚀速率,利用动电位扫描法测绘极化曲线,以进一步探究实验钢的腐蚀过程.研究表明,这种铁素体不锈钢的点蚀电位值随晶粒尺寸增大而大幅提高.浸泡腐蚀实验结果证实,存在一个相对合理的晶粒尺寸范围,晶粒尺寸过小或过大都不利于提高耐蚀性能.  相似文献   

6.
采用动电位极化、电化学阻抗、循环伏安法和扫描电子显微镜,研究了不同充气条件对2205双相不锈钢在NaCl溶液中腐蚀行为的影响。结果表明:充气对2205双相不锈钢在NaCl溶液中的腐蚀行为产生了明显的影响,其中充N_2和O_2降低了2205双相不锈钢在NaCl溶液中的腐蚀电流密度,充CO_2使腐蚀电流密度增大,三种气体都对2205双相不锈钢在NaCl溶液中的点蚀具有抑制作用;随温度升高和NaCl溶液浓度的增加,2205双相不锈钢在NaCl溶液中的腐蚀加剧,点蚀电位降低;2205双相不锈钢在NaCl溶液中的临界点蚀温度在40℃~45℃之间。  相似文献   

7.
探究残余应力状态对304不锈钢管点蚀行为的影响,采用开路电位、动电位极化、交流阻抗谱、Mott-Schottky等方法,研究应力状态及Cl-浓度两种关键因素对冷弯加工后的304不锈钢弯管腐蚀行为的影响,测试弯管不同部位在100、1 000 mg/L的Cl-溶液中的点蚀行为及钝化膜特性,分析了应力状态和Cl-浓度对不锈钢点蚀行为的影响规律及对应腐蚀机理。结果表明,冷加工后304不锈钢U弯拉伸面、压缩面的残余应力分别为拉应力和压应力,未变形的直管部分几乎无应力。腐蚀试验表明,当Cl-质量浓度为100 mg/L时,残余应力会增强不锈钢耐Cl-点蚀的能力并降低钝化膜的载流子浓度,拉应力作用效果强于压应力,而无应力处蚀坑深度最大(80.426μm);当Cl-质量浓度为1 000 mg/L时,拉应力与压应力均降低不锈钢耐Cl-点蚀的能力,且拉应力处蚀坑深度(117.956μm)为同浓度下最大。  相似文献   

8.
不同种不锈钢电化学腐蚀性能的对比   总被引:1,自引:0,他引:1  
采用CHI660D电化学工作站研究304、316L、2205、2507不锈钢在模拟塔里木油田复杂腐蚀介质中的电化学腐蚀性能,并通过扫描电子显微镜(SEM)对其表面的腐蚀产物膜进行对比分析.结果表明:2种复杂腐蚀介质条件下,随温度升高,4种不锈钢的耐蚀性和抗点蚀能力都会降低.CO2的通入对不锈钢的腐蚀过程影响较为复杂.20℃时,4种不锈钢的耐蚀性和抗点蚀能力随CO2的加入均降低;而50、80℃时,4种不锈钢的耐蚀性和抗点蚀能力则会增强.相同腐蚀条件下,4种不锈钢的耐腐蚀能力由强到弱的顺序为:2507、2205、316L、304.  相似文献   

9.
采用动电位极化曲线、电化学阻抗谱、Mott-Schottky曲线等电化学方法研究了以308 L为焊丝的304 L不锈钢焊接接头在不同氯离子含量的混凝土模拟孔隙液中腐蚀行为和电化学规律。随Cl-增加,304 L不锈钢焊接接头的三个区域(母材、焊缝和热影响区)在混凝土模拟孔隙液中的自腐蚀电位、点蚀电位及电荷转移电阻降低,钝化膜中载流子密度和焊接接头的点蚀坑数量增加。在同浓度的腐蚀溶液中,308 L的焊缝区域耐蚀性最佳,热影响区次之,304 L基体表现出低的电荷转移电阻和高的掺杂浓度使得母材的耐蚀性最差。  相似文献   

10.
采用开路电位、电化学阻抗谱(EIS)、Mott-Schottky曲线和浸泡腐蚀实验研究了2507双相不锈钢在含不同浓度(0,0.001和0.01 mol·L-1)NaHSO3模拟海水中的腐蚀行为.研究表明:开路电位随NaHSO3浓度的增加而负移,腐蚀倾向增大;电荷转移电阻Rt随浓度的增加而减小,耐蚀性降低;2507不锈钢的腐蚀形态为局部腐蚀,点蚀程度随浓度升高有所加剧,腐蚀速率随浓度的增加而增大;Mott-Schottky曲线和成膜后电化学阻抗谱测试表明,NaHSO3的加入增加了2507不锈钢表面钝化膜的点缺陷浓度,降低了钝化膜的稳定性,电荷转移阻力减小,腐蚀更容易发生.这可能归因于NaHSO3的加入增加了模拟海水的酸度,并随NaHSO3浓度的增加促进了不锈钢表面钝化膜的破坏.  相似文献   

11.
微量Ga对高压阳极铝箔腐蚀发孔性能的影响   总被引:1,自引:0,他引:1  
采用金相显微镜和扫描电镜观察腐蚀形貌,结合动电位极化曲线测试点蚀电位,研究微量Ga对高压阳极铝箔腐蚀发孔性能的影响.结果表明,含Ga铝箔经退火后,点蚀电位约为-0.85V,比退火态不含Ga铝箔的点蚀电位负移约80 mV;退火后Ga在铝箔表面发生富集,增强了铝箔在含氯离子溶液中的点蚀倾向.当Ga含量20×10-6时,铝箔腐蚀区面积比约98%,腐蚀区内蚀坑数量众多、分布均匀,扩面效果显著;Ga含量达到80×10-6时,虽然腐蚀区面积比高,但腐蚀区内局部区域形成粗大蚀坑,腐蚀均匀性有所降低.因此,添加适量Ga可显著改善铝箔在HCl-H2SO4溶液中的腐蚀发孔性能.  相似文献   

12.
地热水管道不锈钢管材腐蚀与结垢试验   总被引:1,自引:0,他引:1  
在模拟流动地热水环境装置中,分析了不锈钢管材在50℃条件下的表面腐蚀与结垢行为,探讨了不锈钢表面腐蚀与沉积结垢对地热水中离子浓度、自腐蚀电位和质量的影响.研究表明,不锈钢管表面有呈针状堆积的结垢物(主要为CaCO3),而且发生了点腐蚀,腐蚀坑密度随流动地热水作用时间的延长而增加.由于不锈钢表面的点腐蚀、沉积结垢物及流动模拟地热水的冲刷导致的结垢层脱落等过程的影响,模拟地热水溶液中的Ca2+,Mg2+浓度明显下降,至600 h后基本稳定;不锈钢材料的自腐蚀电位在试验前350 h上升,而后稳定在约0.044 V;其质量由于流动模拟地热水的作用表现出不断增加的趋势.  相似文献   

13.
研究了不锈钢去膜表面在氯化镁介质中的点腐蚀现象。去膜表面发生点蚀的临界电位低于膜覆盖表面发生点蚀的临界电位。去膜表面的点蚀主要在晶界和夹杂起源。点蚀形貌是敏锐的条纹状花样。根据作者提出的裸表面与氯化物介质反应步骤模型讨论了点蚀特征电位的意义以及裸表面点蚀形成的过程。  相似文献   

14.
通过极化曲线测试、浸泡实验和表面分析技术研究了不同交流电流密度对X65钢在碳酸盐/碳酸氢盐溶液中腐蚀行为的影响.随交流电流密度的增加,钝化区宽度明显变窄,点蚀击破电位负移,维钝电流密度增大,腐蚀速率增加.在低交流电流密度下(<100A·m-2),维钝电流密度、点蚀程度和腐蚀速率均略增加;在高交流电流密度下(≥100A·m-2),维钝电流密度、点蚀程度和腐蚀速率均快速增加.  相似文献   

15.
AISI316L奥氏体不锈钢是较常用的金属植入材料之一.但在临床应用中,由它制成的植入物特别是全髋关节,常因腐蚀疲劳破断而失效.本文对316L不锈钢在Hank’s溶液中的腐蚀疲劳裂纹萌生机理进行了初步研究.结果发现,在Hank’s溶液中,自然钝化的316L不锈钢在稳定钝化态下,裂纹的萌生是由交变应力引起的微观塑性变形和Hank’s溶液交互作用的结果;在有点蚀产生的非钝化态下,裂纹的萌生是点蚀和腐蚀疲劳相叠加的结果.316L不锈钢经离子氮化表面处理后,提高了在Hank’s溶液中的抗点蚀能力,但在外加腐蚀电位的苛刻条件下,困氮化层发生晶间腐蚀和脱落而加速了裂纹的萌生  相似文献   

16.
采用电化学方法和形貌分析研究了真空条件下2205双相不锈钢在Na Cl溶液中的点蚀和再钝化行为。结果表明:(1) 2205双相不锈钢在真空度为60 k Pa的50 g/L Na Cl溶液中的临界点蚀温度和再钝化温度均在55℃~60℃之间;(2)随着Na Cl浓度(50 g/L~300 g/L)的增加,2205双相不锈钢的临界点蚀温度和再钝化温度变化不明显,但其击穿电位和再钝化电位的值均减小,更容易遭受点蚀破坏;(3)在温度低于临界点蚀温度的30℃下,2205双相不锈钢在不同点蚀发展程度下(强制回扫电流密度0. 01 m A/cm2~5. 00 m A/cm2)均具有良好的再钝化能力。  相似文献   

17.
利用动电位极化、电化学阻抗、恒电位极化以及恒电流极化等电化学测试手段,并结合扫描电镜进行点蚀形态观察,探究了含Cl-溶液中SO2-4浓度对316L奥氏体不锈钢的钝化行为及点蚀行为的影响.结果表明,含Cl-溶液中SO2-4的加入能够使316L不锈钢钝化区变宽,使点蚀电位变正,维钝电流密度降低,进而提高316L的耐点蚀能力.但是在点蚀发生后,随着SO2-4浓度的升高,点蚀内部和边缘形态表现出更为复杂的趋势,蚀坑的周长面积比明显增大.  相似文献   

18.
利用低压冷喷涂技术在Q235普通碳素钢基体表面沉积不同Al质量分数Zn-Al复合涂层,采用开路电位和极化曲线电化学测试方法,分析了Zn-Al复合涂层在3.5 wt.%NaCl溶液中浸泡的腐蚀电位,阻抗值以及腐蚀电流密度;利用附带能谱仪的扫描电子显微镜和X射线衍射仪分析了其在3.5 wt.%NaCl溶液浸泡1 440 h后的涂层组织形貌、特定区域元素分布以及物相变化.研究表明:在3.5 wt.%NaCl溶液中,随着Al质量分数的增加,涂层耐腐蚀性能提高,当Al质量分数大于35%时,涂层耐腐蚀性能更加优越.因为腐蚀过程中Zn元素优先发生腐蚀,易形成稳定性较好的氧化膜,且Al抑制了Zn的活性从而减缓了腐蚀速率,Al质量分数越高,抑制效果越好.Zn-Al复合涂层在3.5 wt.%NaCl溶液的腐蚀机制为均匀腐蚀、点蚀、局部点蚀以及腐蚀产物的自我封闭.  相似文献   

19.
采用循环伏安法(CV)、计时电流法、交流阻抗法(EIS)、扫描电镜(SEM)和X线光电子能谱(XPS)研究不同电位下锆在异丙醇溶液中阳极溶解行为。研究结果表明:当阳极电位为0~1.10 V时,锆表面存在氧化膜导致钝化,不发生活性溶解;交流阻抗复数平面图出现大的容抗弧;自腐蚀电位随时间延长而增大;当阳极电位大于1.10 V,Br~-击穿钝化膜使锆发生活性溶解,锆溶解属于点蚀,交流阻抗复数平面图在高频区出现容抗弧,在中频区出现感抗弧,在低频区出现Warburg阻抗;稳态点蚀电位处于1.10~1.20 V之间,点蚀的成核方式为瞬间三维成核,生长过程为扩散控制;提高阳极电位,点蚀加剧,腐蚀面积加大,腐蚀孔加深,容抗弧直径减小;锆表面钝化膜的主要成分为ZrO_2,在异丙醇溶液中溶解生成Zr(OC_3H_7)_4。  相似文献   

20.
采用原位分析法及化学浸泡法并结合扫描电镜和能谱仪分析,对316L不锈钢中三种典型铬硅锰氧化物夹杂诱发不锈钢点蚀行为进行分析,并探究其腐蚀机理。结果表明,在质量分数为6%的FeCl_3溶液浸泡腐蚀下,316L不锈钢中三种典型铬硅锰氧化物夹杂耐蚀性从大到小的顺序依次为:单一贫铬相(w(Cr)15%)铬硅锰氧化物夹杂单一富铬相(w(Cr)15%)铬硅锰氧化物夹杂MnS与铬硅锰氧化物复合相夹杂;单一相夹杂诱发的点蚀是以小孔腐蚀的形式始发于夹杂物内部,其部位靠近夹杂与基体界面处;而对于MnS与铬硅锰氧化物复合相夹杂诱发的点蚀,首先是夹杂外层包裹的硫化物在较短时间内发生溶解,使得夹杂与基体交界处产生微缝隙,进而导致不锈钢点蚀的产生;铬硅锰氧化物夹杂中铬含量过高(w(Cr)15%)或过低(w(Cr)6%),均会降低不锈钢的抗腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号