共查询到20条相似文献,搜索用时 0 毫秒
1.
A New Approach of Feature Selection for Text Categorization 总被引:1,自引:0,他引:1
CUI Zifeng XU Baowen ZHANG Weifeng XU Junling 《武汉大学学报:自然科学英文版》2006,11(5):1335-1339
This paper proposes a new approach of feature selection based on the independent measure between features for text categorization. A fundamental hypothesis that occurrence of the terms in documents is independent of each other, widely used in the probabilistic models for text categorization (TC), is discussed. However, the basic hypothesis is incom plete for independence of feature set. From the view of feature selection, a new independent measure between features is designed, by which a feature selection algorithm is given to ob rain a feature subset. The selected subset is high in relevance with category and strong in independence between features, satisfies the basic hypothesis at maximum degree. Compared with other traditional feature selection method in TC (which is only taken into the relevance account), the performance of feature subset selected by our method is prior to others with experiments on the benchmark dataset of 20 Newsgroups. 相似文献
2.
刘丽华 《重庆大学学报(自然科学版)》2022,45(5):147-156
随着现代档案管理数据量的不断增长,有效地对档案文本进行聚类划分能够提升档案分类和检索的效率。文中提出2种增量多模态文本数据聚类方法,通过对文本内容进行多视角分析,融合挖掘文本的潜在主题特征,提升文本聚类的准确性。此外,设计文本聚类多模态增量学习模型,提升海量、动态文本划分的效率。在文本数据集上的实验结果表明,文中提出的增量多模态文本聚类方法优于单模态和多模态聚类算法,能够对文本数据进行有效划分。 相似文献
3.
文本分类中的类别信息特征选择方法 总被引:3,自引:0,他引:3
随着网上电子文档的急剧增长,文本分类技术在信息检索中的应用变得日益重要.特征维数增加会使样本统计特性的评估变得更加困难,从而降低分类嚣的泛化能力,出现“过学习”的现象.因此,文档特征的选择和提取是文本分类的必要前提.提出一种基于类别信息的特征选择方法,谊方法在尽量保留文档信息的同时,考虑了文档的类别信息.实验表明,这种方法的分类性能比较好,特别是在微平均指标上,与OCFS以及卡方统计量相比有较大幅度的提高. 相似文献
4.
借鉴基于正则回归的无监督并行正交基聚类特征选择法和最大互信息系数,提出正交基低冗余无监督特征选择法.该方法在正交基下选择具有判别能力的特征,可用最大互信息系数矩阵选择低冗余性的特征子集. 4个图像数据集上的实验结果表明:该方法选择的特征子集可以提高聚类准确率. 相似文献
5.
基于特征贡献度的特征选择方法在文本分类中应用 总被引:1,自引:0,他引:1
在目前的文本分类问题中,特征选择方法被认为是提高分类精度和效率的一种有效方法.提出了一种基于特征贡献度FCD(feature contribution degree)的特征选择方法,本方法将某个特征对于类别之间区分能力的贡献度大小作为该特征被选取的条件,特征对于某一类别的FCD值为特征在该类中出现的文档数与在所有类别中出现的文档数的比值.对该方法进行了实验,并与一些常用的特征选择方法进行了比较,实验结果表明该方法具有更好的分类效果. 相似文献
6.
7.
提出了一种文档聚类方法,对用户的检索结果中类似的文档进行聚类,提供目录结构,辅助用户浏览检索结果.首先分析了现有的文本聚类方法,讨论了它们的优势和不足,然后提出了基于后缀树的中文文本聚类算法,并详细描述了该算法的原理和构造使用过程,及在算法实现的过程中遇到的关键问题及解决方案. 相似文献
8.
Web文本聚类是一种典型的无指导机器学习技术,目标是将站点上采集到的Web文本分成若干簇,使同一簇内的文本相似性最大,不同簇间的文本相似性最小.为了对原始粗糙的Web文本数据进行降维处理,在知识属性值的基础上,计算单个属性相对于属性集的重要性量化值,并根据属性重要性量化值对特征向量降维,并采用K-means算法对降维后的数据聚类,实验证明该方法缩短了聚类时间. 相似文献
9.
Web文本聚类是一种典型的无指导机器学习技术,目标是将站点上采集到的Web文本分成若干簇,使同一簇内的文本相似性最大,不同簇间的文本相似性最小.为了对原始粗糙的Web文本数据进行降维处理,在知识属性值的基础上,计算单个属性相对于属性集的重要性量化值,并根据属性重要性量化值对特征向量降维,并采用K-means算法对降维后的数据聚类,实验证明该方法缩短了聚类时间. 相似文献
10.
目的 通过对现有聚类常用算法的研究,给出一种适用于大规模中本数据集聚类的算法DBTC(density-based text clustering)。方法 采用在DBSCAN算法基础上改进提出的DBTC算法,对中本数据集进行聚类。结果 DBTC算法可以发现任意形状的簇,对中本聚类的准确率高达80%以上。结论 经过分析和实验证明DBTC算法比基本的DBSCAN算法更适合于大规模数据集。 相似文献
11.
针对当前数据挖掘中对数值型数据聚类方法的不足,提出了基于特征点选择的聚类算法(clustering algorithm based on Feature Point Selection,CFPS)。CFPS算法可以克服需要输入聚类数量的缺陷, 算法本身可以找到簇的最佳数量,使聚类的精度和效率得到大大提高。实验结果表明该方法对数值型数据聚类方法具有借鉴意义和深入研究的价值。 相似文献
12.
13.
针对现有大多数多标签特征选择算法未能有效去除特征空间冗余特征,同时也忽略了标签差异性的现状,提出一种基于相关性分析的多标签特征选择方法,利用特征之间的相关度对特征进行分组,解决了特征之间的相关性问题.根据样本所对应的标签属性对样本做一个正负类的聚类,对于正样本和负样本所构成的正类簇和负类簇单独确定其聚类个数,并计算原特征到正负类簇中各个类中心的距离,如此便产生了标签特定特征空间;将标签共享的特征空间和标签特定特征空间融合,考虑到多个标签之间的个性和关联性,解决了标签的差异性问题.实验测试表明,相较于现有的多标签特征选择算法,提出的基于相关性分析的多标签特征选择方法在各个分类指标上均有较优的表现,充分证明了该方法的有效性. 相似文献
14.
随着Internet技术的飞速发展,网页上存在着各种各样、类目繁多的信息,因此网页分类技术就显得越来越有意义。本文使用向量空间模型(VSM)来表示网页文本,提出了一种改进X2的文本特征选择方法,最后通过支持向量机方法进行分类。实验结果表明,相对于传统的X2文本分类统计方法,改进后的特征选择方法的分类效果要好于传统的X2统计方法。 相似文献
15.
根据排序问题的单调先验知识,无监督学习问题中的观测属性之间也具备单调关系;否则该属性与排序无关,为冗余属性.基于排序互信息反应的两属性之间的单调关系,提出用每个属性与其他属性之间的平均互信息,来衡量每个属性与排序学习的相关程度,具有最高的平均互信息即为排序最相关的属性. 相似文献
16.
在非结构化数据挖掘结构模型——发现特征子空间模型(DFSSM)——的运行机制下,提出了一种新的Web文本聚类算法——基于DFSSM的Web文本聚类(WTCDFSSM)算法.该算法具有自稳定性,无须外界给出评价函数;能够识别概念空间中最有意义的特征,抗噪声能力强.结合现代远程教育网应用背景实现了WTCDFSSM聚类算法.结果表明:该算法可以对各类远程教育站点上收集的文本资料信息自动进行聚类挖掘;采用网格结构模型,帮助人们进行文本信息导航;从海量文本信息源中快速有效地获取重要的知识. 相似文献
17.
在对文本分类领域发展现状进行研究的基础上,提出了一种面向文本分类的深度置信网络特征提取方法,通过引入词向量模型和深度置信网络解决传统文本分类方法在文本表示及特征提取方面存在的语义缺失问题,实验结果表明,该方法在文本分类中有更高的准确率。 相似文献
18.
文本挖掘作为数据挖掘的重要研究领域,是检索有用文本信息的重要手段。通过对K-means聚类挖掘方法的基本原理和实现步骤的分析,发现随机选择聚类中心迭代初值、奇异点问题是制约其发展的技术瓶颈,针对该方法的不足,提出了一种基于均值密度中心估计的K-means聚类文本挖掘方法,采用基于均值密度的聚类中心初值估算取代原有方法的随机选取模式,设计自适应的邻域形状选择机制,用均值密度配合阈值消除奇异点。实验结果表明,提出的方法提高了K-means聚类方法的文本挖掘性能,使得文本挖掘查准率得到很大的提高,不仅强于一般K-means均值聚类方法,且和新近流行的自组织神经网络聚类方法相比也具有一定的优势。 相似文献
19.
特征选择作为数据处理的预步骤成为近年来的研究热点.借鉴图的方法,可认为重要的特征应该具有使同类样本更加聚集在同类之中,而使非同类样本间的间隔应该尽可能大的特点.首先详细介绍了当前常用的基于图的特征选择算法,并对其进行了分类比较;接着给出了当前基于图的特征选择算法存在的问题;最后指出了基于图的特征选择算法的研究趋势. 相似文献
20.
由于词语的多语义问题和传统的文本表示与聚类过程相互独立的问题,导致文本聚类准确率较低。针对上述问题提出一种基于多语义文本表示的自适应模糊C-均值(Multi-semanticSrepresentationSbasedSadaptiveSfuzzySC-means, MSR-AFCM)聚类算法。通过将词语软聚类划分成多个词簇构建多个语义空间,将语义空间个数作为文本初始聚类数目,利用词语的语义隶属度计算每个文本属于文本空间的语义隶属度,并以此为对隶属度进行初始化。在算法运行过程中,根据更新的文本语义隶属度和文本分布状况,逐步剔除冗余的文本空间,以达到优化聚类数目的目标。实验结果表明,MSR-AFCM算法相较于传统的聚类算法有更高的准确率和兰德系数,验证了算法的有效性。 相似文献