首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 76 毫秒
1.
2.
为了减少资源受限的移动边缘计算场景下任务卸载和资源分配过程中的能量消耗,提出缓存辅助的动态卸载决策和计算、通信、缓存多维资源分配的联合优化策略。该策略根据任务流行度制定缓存服务,通过控制用户设备的发射功率优化通信资源分配,并结合计算卸载合理利用服务器的计算资源。提出最小化时延和能耗的均衡优化目标,设计基于深度强化学习的优化求解算法。最后,通过仿真实验验证所提策略的有效性,结果表明该策略在计算资源和缓存容量约束条件下能展现较优性能。  相似文献   

3.
移动边缘计算(mobile-edge computing,MEC)中,除了考虑智能移动设备(smart mobile devices, SMD)的能耗,还应考虑微蜂窝基站处理任务的能耗。为了有效降低微蜂窝基站处理任务的能耗,文章提出了一种任务卸载决策算法(task-offloading decision algorithm,TDA)。该算法能够实时地根据卸载到微蜂窝基站上任务的紧急度做出任务卸载的决策,确定卸载任务分片的数据量,联合微蜂窝基站无线通讯范围内的其他基站协作处理任务,有效降低整个处理任务的能量消耗。实验结果表明,在100个微蜂窝基站构成的蜂窝网络中,TDA可以降低蜂窝网络31%~36%的能耗。  相似文献   

4.
5.
6.
无人机具有高移动性,能帮助移动用户在基础通信设施缺乏的环境中快速部署边缘云。为降低基于无人机的边缘计算成本,提高能量利用效率,提出了一种移动边缘计算(Mobile Edge Computing, MEC)系统的任务卸载方案。首先基于排队论模型构建了多用户边缘计算模型,引入等待概率构造了移动边缘计算系统的成本函数,然后采用权重系数将多目标优化问题转化为求解卸载策略的单目标非线性规划问题,最后采用蒙特卡洛剪枝算法进行求解,并引入决策树剪枝算法降低了算法的复杂度。实验结果表明,文中提出的任务卸载方案在CPU性能较低、任务到达率较大的情况下均能降低成本开销,为基于无人机的边缘计算提供了一种低成本的解决方案。  相似文献   

7.
张晓龙  吴巍  周彬 《科学技术与工程》2022,22(11):4434-4439
由于传统云计算的高时延和处理能力有限,无法满足5G网络的发展要求。基于移动边缘计算网络框架,提出了一种结合通信时延和计算时延的联合优化卸载策略用于移动边缘计算网络。该策略通过移动边缘计算设备不同的计算能力和通信链路的不同传输速率,对移动用户任务进行决策。通过仿真分析该卸载方法对任务大小和时延的影响,验证了该方法的优越性。结果表明,相比于传统的卸载方法,该方法可以有效地降低卸载时间和提高数据处理能力,有一定的参考价值。  相似文献   

8.
9.
移动边缘计算中的无人机群协同任务卸载策略研究   总被引:1,自引:0,他引:1  
针对应急灾害中通信受限的场景,研究了基于移动边缘计算(mobile edge computing, MEC)的无人机群(unmanned aerial vehicles,UAV)协同任务卸载问题。在对系统通信过程和计算过程的延时与能耗分析的基础上,设计联盟效用函数和回报函数,并基于享乐博弈模型提出联盟分割形成算法。理论分析证明,该算法最终收敛于某个稳定的联盟分割。仿真结果表明,相比其他典型策略,提出的策略具有更低延时和能耗,能够提升用户服务体验、增加设备续航时间,解决通信受限问题。  相似文献   

10.
计算密集型、时延敏感型车载应用的不断涌现导致资源受限的车载终端设备无法在短时间内处理大量的应用任务,而且卸载节点的动态变化特性在复杂多变的车联网场景中会导致任务候选卸载节点存在不确定性。针对上述问题,提出一种基于强化学习的计算卸载策略来实现任务卸载预判和计算资源分配。结合设备链接时间与通信半径等因素制定卸载节点发现机制,通过考虑时延与成本对车联网移动边缘计算卸载系统的影响建立效用函数,并以最大化效用作为优化目标将车联网中的卸载问题转化为优化问题,基于卸载节点发现机制采用Q-learning方法提出一种智能节点选择卸载算法求解优化问题,实现任务的智能卸载。仿真结果表明,在车联网场景中,提出的计算卸载策略可实现更高的系统效用。  相似文献   

11.
在不确定的无线网络环境中,由于任务到达、用户移动的随机性以及无线信道状态的时变性,导致出现不确定的任务云端排队时延、设备网络连接时间等网络环境特征,极大影响计算卸载效率和网络资源利用率。针对这一问题,建立了算网协同的动态任务卸载和资源联合分配模型,以最小化系统总能耗为目标,提出了基于随机模拟的任务卸载和算网资源联合分配多阶段随机规划优化算法(SS-MSSP),采用多阶段随机规划理论制定多阶段策略,并以后验算网资源分配的方式来追索补偿不确定网络环境的影响。仿真结果表明,在不确定的网络环境中,SS-MSSP算法保证了用户的计算时延需求,同时有效降低了系统能耗。  相似文献   

12.
为了缓解车联网中个体车辆计算资源配置过低而导致的任务处理时延较大的问题,提出了一种移动边缘计算(mobile edge computing, MEC)架构下的动态任务卸载策略和资源分配方案。以最小化全网任务处理时延为目标,将车联网中的任务卸载和资源分配问题建模为马尔可夫决策过程(Markov decision process, MDP),并利用深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法进行了问题求解。仿真结果表明,与执行者-评价者(actor-critic, AC)和深度Q网络(deep Q-network, DQN)这2种算法相比,DDPG算法以最快的算法收敛特性获得最小的全网任务处理时延。  相似文献   

13.
以接收端的平均接收信噪比(SNR)最大化为目标,两跳放大转发中继网络多中继选择策略问题被规划为0-1非线性整数规划问题,其最优解只可以利用穷举法得到.提出基于深度学习多中继选择策略,降低时间复杂度.仿真结果表明:与穷举法相比,该方法能够达到几乎相同的平均接收SNR,且其时间复杂度明显低于穷举法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号