首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Here we present the results of dehydration melting, melt morphology and fluid migration based on the dehydration melting experiments on natural biotite-plagioclase gneiss performed at the pressure of 1.0—1.4 GPa, and at the temperature of 770—1028℃. Experimental results demonstrate that: (ⅰ) most of melt tends to be distributed along mineral boundaries forming “melt film” even the amount of melt is less than 5 vol%; melt connectivity is controlled not only by melt topology but also by melt fraction; (ⅱ) dehydration melting involves a series of subprocesses including subsolidus dehydration reaction, fluid migration, vapor-present melting and vapor-absent melting; (ⅲ) experiments produce peraluminous granitic melt whose composition is similar to that of High Himalayan leucogranites (HHLG) and the residual phase assemblage is Pl+Qz+ Gat+Bio+Opx± Cpx+Ilm/Rut± Kfs and can be comparable with granulites observed in Himalayas. The experiments provide the evidence that biotite-plagioclase gneiss is one of source rocks of HHLG and dehydration melting is an important way to form HHLG and the granulites. Additionally, experimental results provide constraints on determining the P-T conditions of Himalayan crustal anatexis.  相似文献   

2.
Gao  LiE  Zeng  LingSen  Xie  KeJia 《科学通报(英文版)》2012,57(6):639-650
Determination of the timing and geochemical nature of early metamorphic and anatectic events in the Himalayan orogen may provide key insights into the physical and chemical behavior of lower crustal materials during the early stage of tectonic evolution in large-scale collisional belts.The Yardoi gneiss dome is the easternmost dome of the North Himalayan Gneiss Domes(NHGD),and contains three types of amphibolites with distinct mineral assemblage,elemental and radiogenic isotope geochemistry,as well as various types of gneisses.SHRIMP zircon U/Pb analyses on the garnet amphibolite and garnet-bearing biotite granitic gneiss yield ages of nearly peak metamorphism at 45.0±1.0 Ma and 47.6±1.8 Ma,respectively,which are 2 to 4 Ma older than the age for partial melting in migmatitic garnet amphibolite(43.5±1.3 Ma).Available data have demonstrated that ultra-high pressure metamorphism in the Tethyan Himalaya occurred at ~55 Ma,and high amphibolite facies to granulite facies metamorphism at 45 to 47 Ma.In addition,partial melting at thickened crustal conditions occurred at 43.5±1.3 Ma,which led to the formation of high Sr/Y ratios two-mica granites.The high-grade metamorphic rocks in the NHGD may represent the subducted front of the Indian continental lithosphere.In large collisional belts,fertile components in crustal materials could melt and form granitic melts with relatively high Na/K and Sr/Y ratios under thickened crustal conditions,significantly different from those formed by decompressional melting during rapid exhumation.  相似文献   

3.
The continental lithosphere growth mainly includes the horizontal accretion at the plate boundaries and vertical accretion within the plate[1]. Mafic magmatic materials, as the products of crust-mantle interaction[2,3], became more and more important in studying the formation and evolu- tion of the lower crust. The previous geologic researcheson Tianshan, extending nearly 2500 km from east to west, and the neighbor area were mainly focused on the Paleozoic collision structure[4 ― 6], Mesozoi…  相似文献   

4.
Zircon SHRIMP U-Pb dating was carried out for an intermediate granulite xenolith in Cenozoic alkali basalt from Nushan. The results suggest that the lower crust beneath Nushan may have formed at about 2400—2200 Ma, and have been subjected to granulite-facies metamorphism at 1915 27 Ma. The old age of the Nushan lower crust is consistent with the geochemical similarities between Nushan granulite xenoliths and Archean-Paleoproterozoic granulite terrains in the North China craton, but it is not distinguishable from high-grade metamorphic rocks in the Yangtze craton where such old ages were also reported. Significant Pb-loss occurs in the Nushan zircons, implying important influence of widespread Mesozoic to Cenozoic underplating in East China on the lower crust beneath Nushan.  相似文献   

5.
Zircon chronology and REE geochemistry of granulite xenolith at Hannuoba   总被引:10,自引:0,他引:10  
The lower crustal xenolith of mafic two-pyroxene granulite (the majority) and hypersthene granulite in the Cenozoic basalt at Hannuoba have the characteristics of igneous blastic structure and granulite facies metamorphic recrystallization. Study on the zircon chronology and REE geochemistry of granulite xenolith shows that the underplating of basic magma into the lower crust during late Mesozoic led to the formation of mafic accumulate, which further through metamorphism of granulite facies formed the high-density and high-velocity crustal bottom layer at the lower crust. This suggests that the underplating of mantle magma is the important way for the vertical overgrowth of continental crust since the Phanerozoic and provides new evidence for crust-mantle interaction.  相似文献   

6.
The Yardoi gneiss dome is located to the easternmost of the North Himalayan Gneiss Dome (NHGD), southern Tibet. It consists of metapelite, garnet amphibolite, granite and leucogranite, and is a key subject to constrain the formation and tectonic evolution of NHGD. SHRIMP zircon U/Pb data on the leucogranite yield an age of 35.3±1.1 Ma, which is substantially older than that of the similar leucogranites to the west. Sr and Nd isotope systematics indicate that this leucogranite was derived from partial melting of the mixed garnet amphibolite and metapelite. Our data suggest that (1) during the early stage of Himalayan magmatism, amphibolite dehydration melting overwhelmed that of the metapelite; and (2) such a melting at middle-lower crust might be a major factor that initiated the movement along the Southern Tibetan Detachment System (STDS). Supported by National Natural Science Foundation of China (Grant No. 40673027), the Outlay Research Fund of Chinese Academy of Geological Sciences (Grant No. 20071120101125), and the Hundred Talent Program of Chinese Academy of Sciences  相似文献   

7.
The Paiku composite leucogranitic pluton in the Malashan gneiss dome within the Tethyan Himalaya consists of tourmaline leucogranite, two-mica granite and garnet-bearing leucogranite. Zircon U-Pb dating yields that (1) tourmaline leucogranite formed at 28.2±0.5 Ma and its source rock experienced simultaneous metamorphism and anatexis at 33.6±0.6 Ma; (2) two-mica granite formed at 19.8±0.5 Ma; (3) both types of leucogranite contain inherited zircon grains with an age peak at ~480 Ma. These leucogranites show distinct geochemistry in major and trace elements as well as in Sr-Nd-Hf isotope compositions. As compared to the two-mica granites, the tourmaline ones have higher initial Sr and zircon Hf isotope compositions, indicating that they were derived from different source rocks combined with different melting reactions. Combined with available literature data, it is suggested that anatexis at ~35 Ma along the Himalayan orogenic belt might have triggered the initial movement of the Southern Tibetan Detachment System (STDS), and led to the tectonic transition from compressive shortening to extension. Such a tectonic transition could be a dominant factor that initiates large scale decompressional melting of fertile high-grade metapelites along the Himalayan orogenic belt. Crustal anatexis at ~28 Ma and ~20 Ma represent large-scale melting reactions associated with the movement of the STDS.  相似文献   

8.
Bjørnerud MG  Austrheim H 《Nature》2006,440(7082):E4; discussion E4-E4; discussion E5
The mechanisms by which mafic rocks become converted to denser eclogite in the lower crust and mantle are fundamental to our understanding of subduction, mountain building and the long-term geochemical evolution of Earth. Based on larger-than-expected gradients in argon isotopes, Camacho et al. propose a new explanation--co-seismic injection of hot (700 degrees C) aqueous fluids into much colder (400 degrees C) crust--for the localized nature of eclogite metamorphism during Caledonian crustal thickening, as recorded in the rocks of Holsn?y in the Bergen arcs, western Norway. We have studied these unusual rocks, which were thoroughly dehydrated under granulite facies conditions during a Neoproterozoic event (about 945 million years (945 Myr) ago); we also concluded that fracture-hosted fluids were essential as catalysts and components in the conversion to eclogite about 425 Myr ago. However, we are sceptical of the assertion by Camacho et al. that eclogite temperatures were reached only in the vicinity of fluid-filled fractures. Determining whether these rocks were strong enough to fracture at depths of 50 km because they were cold or because they were very dry is crucial to understanding the mechanics of the lower crust in mountain belts, including, for example, the causes of seismicity in the Indian plate beneath the modern Himalayas.  相似文献   

9.
Systematical studies of post-collisional igneous rocks in the Dabie orogen suggest that the thickened mafic lower crust of the oro- gen was partially melted to form low-Mg# adakitic rocks at 143-131 Ma. Delamination and foundering of the thickened mafic lower crust occurred at 130 Ma, which caused the mantle upwelling and following mafic and granitic magmatic intrusions. Mig- matite in the North Dabie zone, coeval with the formation of low-Mg# adakitic intrusions in the Dabie orogen, was formed by partial melting of exhumed ultrahigh-pressure metamorphic rocks at middle crustal level. This paper argues that the partial melting of thickened lower and middle crust before mountain-root collapse needs lithospheric thinning. Based on the geothermal gradient of 6.6~C/km for lithospheric mantle and initial partial melting temperature of ~1000~C for the lower mafic crust, it can be estimated that the thickness of lithospheric mantle beneath thickened lower crust has been thinned to 〈45 km when the thickened lower crust was melting. Thus, a two-stage model for mountain-root removal is proposed. First, the lithospheric mantle keel was partially removal by mantle convection at 145 Ma. Loss of the lower lithosphere would increase heat flow into the base of the crust and would cause middle-lower crustal melting. Second, partial melting of the thickened lower crust has weakened the lower crust and increased its gravity instability, thus triggering delamination and foundering of the thickened mafic lower crust or mountain-root collapse. Therefore, convective removal and delamination of the thickened lower crust as two mechanisms of lithospheric thin- ning are related to causality.  相似文献   

10.
From Global Position System (GPS) measurements, there is a clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau. This phenomenon is difficult to be interpreted by simple two-dimensional modeling from a geodynamic point of view. Because of the extremely thick crust and the lower crust with relatively high temperature in the Tibetan Plateau, the lithospheric rheology in Tibet and surrounding areas present a complex structure. In general, the tectonic structure of the Tibetan Plateau consists of brittle upper crust, ductile lower crust, high viscosity lithospheric upper mantle, and low viscosity asthenosphere, the same as the case in many other continental regions. However, the lower crust in the Tibetan Plateau is much more ductile with a lower viscosity than those of its surroundings at the same depth, and the effective viscosity is low along the collision fault zone. In this study, we construct a three-dimensional Maxwell visco-elastic model in spherical coordinate system, and simulate the deformation process of the Tibetan Plateau driven by a continuous push from the Indian plate. The results show that the existence of the soft lower crust under the plateau makes the entire plateau uplift as a whole, and the Himalayas and the eastern Himalayan syntax uplift faster. Since the lower crust of surrounding blocks is harder except in the southeastern corner where the high-temperature material is much softer and forms an exit channel for material transfer, after the whole plateau reaches a certain height, the lower crustal and upper mantle material begins to move eastward or southeastward and drag the upper crust to behave same way. Thus, from the macroscopic point of view, a relative rigid motion of the plateau with a clockwise rotation around the eastern Himalayan syntax is developed. Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-123) and National Natural Science Foundation of China (Grant Nos. 40774048 and 90814014)  相似文献   

11.
Guo  SuShu  Li  ShuGuang 《科学通报(英文版)》2009,54(11):1923-1930
Leucogranites have a relatively narrow variation in SiO2 content (70.5%-75.5%). Giving similar SiO2 content, leucogranites have relatively higher Al2O3 (〉13.5%) and lower TFeO + MgO (〈2.5%) contents than those of normal granites. These petrochemical characteristics suggest that leucogranites are de- rived from partial melting at relatively low temperature and are not significantly affected by fractional crystallization. In the present study, we propose that the Al2O3 vs SiO2 and TFeO + MgO vs SiO2 dia- grams can be used to distinguish leucogranites from normal granites. In addition, we report the major element compositions of the Jurassic granitic intrusions from Jingshan-Tushan-Mayishan in the Bengbu area, east-central China. Using the Al2O3 vs SiO2 and TFeO + MgO vs SiO2 diagrams and the comparison with the High Himalayan leucogranites in mineralogical and petrochemical characteristics, we suggest that the Jingshan-Tushan-Mayishan intrusions belong to a leucogranite belt. Similar to those of the High Himalayan leucogranites, the Bengbu leucogranites have low Mg# values, indicating that they resulted from low temperature dehydration partial melting of the subducted continental crust of the South China Block at the crustal depth.  相似文献   

12.
The thermal structure of the crust strongly influences deformation, metamorphism and plutonism. Models for the geothermal gradient in stable crust predict a steady increase of temperature with depth. This thermal structure, however, is incompatible with observations from high-temperature metamorphic terranes exhumed in orogens. Global compilations of peak conditions in high-temperature metamorphic terranes define relatively narrow ranges of peak temperatures over a wide range in pressure, for both isothermal decompression and isobaric cooling paths. Here we develop simple one-dimensional thermal models that include the effects of melt migration. These models show that long-lived plutonism results in a quasi-steady-state geotherm with a rapid temperature increase in the upper crust and nearly isothermal conditions in the middle and lower crust. The models also predict that the upward advection of heat by melt generates granulite facies metamorphism, and widespread andalusite-sillimanite metamorphism in the upper crust. Once the quasi-steady-state thermal profile is reached, the middle and lower crust are greatly weakened due to high temperatures and anatectic conditions, thus setting the stage for gravitational collapse, exhumation and isothermal decompression after the onset of plutonism. Near-isothermal conditions in the middle and lower crust result from the thermal buffering effect of dehydration melting reactions that, in part, control the shape of the geotherm.  相似文献   

13.
锆石SHRIMP U-Pb定年结果显示: 内蒙古中部白音乌拉地区原宝力高庙组的流纹岩形成时代为300.0±2.9 Ma, 属晚石炭世; 青格勒宝拉格地区原宝力高庙组的凝灰岩结晶年龄为159.6±1.4 Ma, 并获得 3颗捕获锆石的年龄分别为291.8±3.4, 304.0±3.3和734.7±9.2 Ma, 应属于晚侏罗世满克头鄂博组。锆石LA-MC-ICP-MS Hf同位素分析显示: 流纹岩锆石εHf(t) 值为+10.5~+12.9, TDMC值为493~645 Ma; 凝灰岩岩浆锆石εHf(t)值为+10.1~+13.1, TDMC值为369~563 Ma。研究结果表明, 流纹岩源于晚古生代新生地壳的重熔并混入少量老地壳物质, 凝灰岩源于晚古生代地壳的熔融。Hf同位素特征显示晚古生代流纹岩和中生代凝灰岩源于相似的源区, 揭示了晚古生代的一次重要的增生事件, 并且在约160 Ma时期发生过地壳的再造。结合前人的研究成果表明, 兴蒙造山带在约300 Ma时处于古亚洲洋演化过程中岛弧向碰撞后伸展环境的转换时期, 在约160 Ma受到蒙古?鄂霍茨克构造域的影响。  相似文献   

14.
HighP-T experiment with natural massive rock sample of garnet biotite plagioclase gneiss indicates that the metamorphic reaction involving melt (reaction between relic mineral phase and melt) is the most important reaction in granulite-facies metamorphism and accompanies anatexis process.  相似文献   

15.
Foley S  Tiepolo M  Vannucci R 《Nature》2002,417(6891):837-840
It is thought that the first continental crust formed by melting of either eclogite or amphibolite, either at subduction zones or on the underside of thick oceanic crust. However, the observed compositions of early crustal rocks and experimental studies have been unable to distinguish between these possibilities. Here we show a clear contrast in trace-element ratios of melts derived from amphibolites and those from eclogites. Partial melting of low-magnesium amphibolite can explain the low niobium/tantalum and high zirconium/samarium ratios in melts, as required for the early continental crust, whereas the melting of eclogite cannot. This indicates that the earliest continental crust formed by melting of amphibolites in subduction-zone environments and not by the melting of eclogite or magnesium-rich amphibolites in the lower part of thick oceanic crust. Moreover, the low niobium/tantalum ratio seen in subduction-zone igneous rocks of all ages is evidence that the melting of rutile-eclogite has never been a volumetrically important process.  相似文献   

16.
The Ramba gneiss dome, one of the north Himalayan gneiss domes, is composed of three tectono-lithologic units separated by an upper and a lower detachment fault. Low-grade metamorphic Tethyan Himalayan sedimentary sequence formed the upper unit above the brittle upper detachment fault. Mylonitic gneiss and a leucogranite pluton made up the lower unit beneath the ductile lower detachment fault. Mylonitic middle-grade garnet-, staurolite- and andalusite-schist constituted the middle unit between the two faults, which may be that the basal part of the upper unit experienced detachment shear. The Ramba dome underwent three episodes of deformation in its tectonic evolution. The first episode was a top-down-to-north-northwest sliding possibly related to the activity of the south Tibetan detachment system (STDS). The second episode was the dominant deformation related to a east west extension, which resulted in a unique top-down-to-east kinematics and the major tectonic features of the dome. The third episode was a collapse sliding toward the outsides of the dome. The Ramba gneiss dome is possibly a result of the east-west extension and magmatic diapir. The lower detachment fault is probably the main detachment fault separating the sedimentary sequence from the crystalline basement during the eas-west extension in the dominant deformation episode. The diapir of the leucogranite pluton formed the doming shape of the Ramba gneiss dome. This pluton intruded in the core of the dome in a late stage of the dominant deformation, and its Ar-Ar cooling ages are about 6 Myr. This indicates that the dominant deformation of the dome happened at the same time of the east west extension represented by the nort-south trending rifts throughout the northern Himalaya and southern Tibet. Therefore, the formation of the Ramba gneiss dome should be related to this east west extension.  相似文献   

17.
粤东中生代花岗质火山-侵入杂岩成因的Nd同位素制约   总被引:1,自引:0,他引:1  
运用Nd同位素及稀土元素Nd的含量关系对岩浆成因的制约,结合区域地质地球化学特征,确定粤东地区中生代花岗质火山-侵入杂岩的成因机制,不是幔源岩浆同化地壳物质并发生分离结晶作用以及壳幔两种来源岩浆的混合作用,而是地壳深熔作用,即古老地壳基底岩石的部分熔融作用。  相似文献   

18.
咸沟岩体位于华北地台北缘西段.主岩体为二云母花岗岩,成岩时代为399.8±1.82.1Ma,内有岩浆演化晚期的白云母花岗岩侵入,与主岩体有迥然不同的地球化学特点.前者显示出不同地壳物质混合的岩浆特征,后者属典型的S型花岗岩.结合区域构造演化分析,认为咸沟岩体形成于拉张环境,源岩可能为下地壳的英云闪长岩.下地壳的深熔岩浆在上升迁移过程中,遭受了富含泥质的陆壳物质的强烈混染,混染岩浆向S型岩浆方向演化.  相似文献   

19.
Cenozoic basalt-borne mafic granulite-facies plagioclase pyroxenite and eclogite-facies garnet pyroxenite xenoliths from the Hannuoba, as well as nearby Archean terrain granulites, are selected for the experimental study on the P wave velocity at high temperature and high pressure in order to reveal the present-day compositional features for the lower crust and crust-mantle transitional zone. Results show that mafic xenoliths have high Vp (7.0~8.0 km/s), in contrast, the Archean terrain granulites have low Vp (<7.0 km/s). High Vp mafic xenoliths can represent the present-day compositional features for the lower crust and crust-mantle transitional zone beneath the Hannuoba. This provides new evidence for the crust vertical growth and the formation of the crust-mantle transitional zone resulting from the magma underplating. Low Vp Archean granulite still remains the characteristics of the early lower crust.  相似文献   

20.
Backscattered electron images, in situ Hf isotopes, U-Pb ages and trace elements of zircons in a banded granulite xenolith from Hannuoba basalt have been studied. The results show that the banded granulite is a sample derived from the early lower crust of the North China craton. It is difficult to explain the petrogenesis of the xenolith with a single process. Abundant information on several processes, however, is contained in the granulite. These processes in-clude the addition of mantle material, crustal remelting, metamorphic differentiation and the delamination of early lower crust. About 80% of zircons studied yield ages of 1842 ±40 Ma, except few ages of 3097-2824 Ma and 2489-2447 Ma. The zircons with ages older than 2447 Ma have high εHf (up to +18.3) and high Hf model age (2.5-2.6 Ga), indicating that the primitive materials of the granulite were derived mainly from a depleted mantle source in late Archean. Most εhf of the zircons with early Proterozoic U-Pb age vary around zero, but two have  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号