首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CdSe是一种具有可见光响应的半导体材料,利用CdSe对TiO_2进行敏化有望使复合材料具有可见光吸收,有效促进光生电荷的分离.采用水热法在掺杂F的SnO2(FTO)导电玻璃表面制备金红石TiO_2纳米棒阵列,再采用连续离子层吸附反应法在TiO_2纳米棒阵列表面复合CdSe纳米颗粒,制得CdSe纳米颗粒敏化的TiO_2纳米棒阵列,并对其进行了表征.实验结果表明,CdSe纳米颗粒敏化的TiO_2纳米棒阵列在可见光区有较强的光吸收,其光电流密度是TiO_2纳米棒阵列的10倍,对亚甲基蓝的可见光催化降解速率较亚甲基蓝的自降解和TiO_2纳米棒阵列分别提高了85%和75%.  相似文献   

2.
通过两步阳极氧化法结合水热法,制备不同水热反应时间条件下的异质结TiO_2/SrTiO_3纳米管阵列,利用X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、场发射投射电镜(FE-TEM)表征手段对异质结TiO_2/SrTiO_3材料进行表征,并通过开路电压谱和瞬态光电流图谱分析对异质结光催化材料的光电化学特性进行了研究,同时紫外光下降解罗丹明B(Rh.B)来研究异质结TiO_2/SrTiO_3材料的光电催化活性和耐光腐蚀稳定性.实验研究表明,TiO_2表面发生原位取代形成Sr TiO_3晶体颗粒,并促使TiO_2锐钛矿(004)晶面的趋向生长.水热1~5,h的异质结TiO_2/SrTiO_3纳米管阵列仍具有较好的催化活性.通过光电性能测试,水热反应2,h后的异质结材料表现出最好的光电化学特性.此外,光电催化结果表明,光电催化200,s、水热反应2,h的异质结材料的降解率是纯TiO_2纳米管的1.71倍,且表现出较好的耐光腐蚀稳定性.  相似文献   

3.
在氟化铵-乙二醇体系中,采用阳极氧化法在铁基体上制备Fe_2O_3纳米管阵列,然后以氟钛酸铵为钛源,利用水热法在Fe_2O_3纳米管阵列上负载TiO_2纳米片,制得Fe_2O_3/TiO_2复合纳米管阵列,利用SEM、EDS、XRD、TEM、UV-Vis等手段,对所制Fe_2O_3/TiO_2纳米管阵列的表面形貌、物相结构及光催化性能进行表征,并分析Fe_2O_3/TiO_2纳米结构对亚甲基蓝的可见光降解能力。结果表明,Fe_2O_3/TiO_2复合纳米管阵列具有良好的可见光响应;NH_4F浓度为0.4%、水热反应3h制备的Fe_2O_3/TiO_2复合结构具有最佳的光催化性能,对亚甲基蓝的降解率可达90%。  相似文献   

4.
为了提高纳米二氧化钛(TiO_2)的光电化学性能,首先采用水热法,以稀盐酸、钛酸丁酯和氟钛酸铵作为原料,在掺杂氟的氧化锡(FTO)导电玻璃上制备了(001)面主导的TiO_2纳米片阵列薄膜。通过电化学腐蚀法制得均一、稳定、高活性碳量子点(carbon quantum dots,CQDs),再通过电泳法将CQDs修饰到TiO_2纳米片阵列薄膜表面,形成CQDs/TiO_2纳米片阵列复合材料。利用扫描电镜(scanning electron microscope,SEM)、 X射线衍射(X-ray diffraction,XRD)、拉曼光谱、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)和紫外可见光谱(UV-vis)对复合材料的形貌、晶型、表面元素成分和光吸收能力进行表征,通过电化学工作站测试复合材料的光电化学性能。结果表明:CQDs/TiO_2复合材料为锐钛矿晶型,形貌规整均匀;CQDs修饰后TiO_2纳米片的最大吸收波长由388 nm增加到576 nm,光化学能转化率高达2.38%,光电流是TiO_2纳米片的8倍,交流阻抗减小,具有非常优异的光电化学性能。  相似文献   

5.
采用阳极氧化法及光沉积法制备Ag改性Ti O2纳米管阵列,采用XRD、SEM分析样品的晶型和形貌特征,并利用电化学工作站三电极体系通过I-E、光生电位、光电流响应及莫特肖特基曲线考察样品的光电化学性能。结果表明:Ti O2纳米管阵列的内径约为60 nm,管壁厚度约为30 nm,Ag颗粒粒径为15~20 nm;光沉积时间对Ag颗粒尺寸几乎没有影响,仅增加了Ag粒子的沉积量;Ag的改性能够有效地促进电子和空穴的分离,提高了对太阳光的利用率,在氙灯照射下,Ag-Ti O2纳米管阵列具有良好的光电化学性能,光电流达到0.28 m A/cm2,载流子密度ND为2.21×1022cm-3,光转化率可达到4.10%。  相似文献   

6.
采用阳极氧化法及光沉积法制备Ag改性Ti O2纳米管阵列,采用XRD、SEM分析样品的晶型和形貌特征,并利用电化学工作站三电极体系通过I-E、光生电位、光电流响应及莫特肖特基曲线考察样品的光电化学性能。结果表明:Ti O2纳米管阵列的内径约为60 nm,管壁厚度约为30 nm,Ag颗粒粒径为15~20 nm;光沉积时间对Ag颗粒尺寸几乎没有影响,仅增加了Ag粒子的沉积量;Ag的改性能够有效地促进电子和空穴的分离,提高了对太阳光的利用率,在氙灯照射下,Ag-Ti O2纳米管阵列具有良好的光电化学性能,光电流达到0.28 m A/cm2,载流子密度ND为2.21×1022cm-3,光转化率可达到4.10%。  相似文献   

7.
为了增加光电极光生电子传输通道并提高其光敏剂的负载能力,采用两步水热法制备了一种新颖的TiO_2-ZnO纳米棒分级结构。采用水热法在FTO导电玻璃基底上生长TiO_2纳米棒有序阵列膜,通过浸泡提拉在TiO_2纳米棒上包覆一层ZnO溶胶,经烧结形成ZnO种子层;再次采用水热法于TiO_2纳米棒上生长ZnO纳米棒,形成TiO_2-ZnO纳米棒分级结构,通过旋涂辅助连续离子反应分别在TiO_2纳米棒阵列和TiO_2-ZnO纳米棒分级结构中沉积光敏剂CdS纳米晶,形成CdS/TiO_2纳米棒复合膜和CdS/TiO_2-ZnO纳米分级结构复合膜。利用SEM,TEM,XRD、紫外-可见吸收光谱、瞬态光电流图谱等表征和测试手段,对样品的形貌、结构、光吸收和光电性能进行了表征和测试。结果表明,与单纯的TiO_2纳米棒阵列相比,TiO_2-ZnO分级结构可以沉积更多的CdS光敏剂,CdS/TiO_2-ZnO纳米分级结构复合膜的光吸收性能和瞬态光电流均明显优于CdS/TiO_2纳米复合薄膜。凭借优异的光电性能,TiO_2-ZnO分级结构在太阳电池光阳极材料中具有很好的应用前景。  相似文献   

8.
采用电化学沉积法在ITO透明导电玻璃上制备PbS纳米晶薄膜,研究其对量子点敏化太阳能电池光电性能的影响.研究发现,该PbS纳米晶薄膜由粒径约几十纳米到几百纳米的颗粒堆积而成,形成了较疏松的薄膜结构.X线衍射分析表明,该PbS为立方相结构.采用PbS薄膜作为对电极,CdSe量子点敏化TiO2纳米晶薄膜为光阳极组装电化学电池,电池的效率由Pt对电极的0.045%增大到0.098%,表明PbS对电极的电催化活性优于Pt对电极.  相似文献   

9.
通过水热法制备氧化铁纳米棒阵列,用溶胶-凝胶法旋涂铁酸铋对纳米棒阵列进行修饰,以半导体复合的方式提高Fe2O3的光电化学性能;采用XRD、SEM对复合材料进行物相、形貌表征,通过电化学工作站测试复合材料的线性伏安曲线,交流阻抗;考察复合材料光电化学性能的增强机制.结果表明:氧化铁与铁酸铋复合的最佳退火温度为600℃,在...  相似文献   

10.
采用循环伏安一步法在Pt/CNTs基体上制得PANI-NiHCF立方体纳米复合颗粒。通过调节制备液中苯胺单体浓度对复合颗粒的结构和性能进行调控。利用X射线能谱仪(EDS)、扫描电子显微镜(SEM)、循环伏安(CV)、电化学阻抗(EIS)等技术表征手段对复合纳米颗粒的组成、表观形貌及电化学性能进行分析与测试。研究结果表明:随制备液中苯胺单体浓度增大,复合纳米颗粒中PANI与NiHCF组分摩尔比逐渐增大、立方体颗粒粒度先变大后变小且复合颗粒中NiHCF的微观结构随之变化。聚苯胺与"不溶性"结构NiHCF结合更加牢固稳定且电荷传递电阻小。  相似文献   

11.
通过简单直接的两步电化学沉积法成功制备了核壳结构的ZnO/V2O5纳米管阵列.通过采用XRD,SEM,TEM和XPS等表征手段对这些制备的ZnO/V2O5核壳纳米管结构的物相和微结构进行分析.光电化学测试结果表明:ZnO/V2O5核壳纳米管阵列相比于单一的ZnO纳米棒阵列具有明显增强的光电化学性能,使其有望在光解水领域得到广泛的应用.  相似文献   

12.
通过溶液中等离子法快速制备Pt纳米颗粒,选用TiO_2(P25)提升Pt纳米颗粒的电催化性能,并以石墨烯纳米片(GNs)为载体材料,通过简单的超声混合制备Pt/GNs/TiO_2催化剂。采用X线衍射仪(XRD)、透射电子显微镜(TEM)、X线光电子能谱仪(XPS)及循环伏安曲线(CV)测试等表征手段分析样品的组成、形貌、表面电子特性及对甲醇的电催化性能。结果表明:制备得到了在GNs表面分布均匀、结晶性良好并且直径为2~5 nm的Pt纳米颗粒,同时TiO_2也成功分散在GNs表面。加入TiO_2极大地提高了Pt纳米颗粒对甲醇的电催化活性,Pt/GNs/TiO_2的电流密度约为2 480 m A/mg,是未加入TiO_2的Pt/GNs(747 m A/mg)的3.3倍,同时其循环性能和抗中毒性能也得到了提升。  相似文献   

13.
本文用TiO_2纳米管阵列作为薄膜锂离子电池的三维模板,通过磁控溅射在TiO_2纳米管上沉积LiFePO_4薄膜,制备出了具有三维结构的LiFePO_4薄膜.结果表明,这种结构的电池不仅增大了LiFePO_4与电解质的接触面积、提高了正极材料的利用率,还有效地缩短了锂离子的迁移路径、弥补了锂离子扩散率低的缺陷,从而改善了电极材料的动力学性能.  相似文献   

14.
空穴界面传递阻力过大是影响α-Fe2O3薄膜光电催化活性的主要原因之一,本文旨在探讨通过调控薄膜表面纳米结构从而优化空穴界面传递动力学的可能性.基于简单的电化学沉积路线,制备了表面纳米结构可调控的α-Fe2O3薄膜.采用原子力显微镜(AFM)、扫描电子显微镜(SEM)、X射线粉末衍射(XRD),紫外可见漫反射光谱(UV-vis DRS)分别研究薄膜样品的形貌、结构和光吸收性能;采用斩光计时电流(I-t)、循环伏安法(CV)、电化学阻抗谱(EIS),开路光电压演变(Voc)等光电化学测试技术对影响样品光活性的因素进行研究.结果表明,有尖锐突起纳米结构的表面相比于平坦表面更加利于空穴的界面传递,从而减弱了由于空穴积累而导致的复合加剧问题.  相似文献   

15.
通过简单直接的两步电化学沉积法成功制备了核壳结构的 ZnO/V2 O5纳米管阵列。通过采用 XRD, SEM,TEM和 XPS 等表征手段对这些制备的 ZnO/V2 O5核壳纳米管结构的物相和微结构进行分析。光电化学测试结果表明:ZnO/V2 O5核壳纳米管阵列相比于单一的 ZnO 纳米棒阵列具有明显增强的光电化学性能,使其有望在光解水领域得到广泛的应用。  相似文献   

16.
采用阳极氧化法制备了二氧化钛(TiO_2)纳米管阵列,通过扫描电镜形貌表征对其制备工艺进行了研究。用高温氢化工艺制得黑TiO_2纳米管阵列,分别通过X射线衍射和紫外-可见光谱对其晶相结构和光吸收性能进行了表征。研究了黑TiO_2纳米管阵列的光电转化性能。研究结果表明:在电解液中水的体积分数为5%、阳极氧化电压为30 V和乙醇溶液中超声处理30 min的条件下,制得的TiO_2纳米管阵列规整有序、管壁光滑且管口干净。经高温氢化处理所制得的黑TiO_2纳米管阵列,对可见光的吸收明显增强。黑TiO_2纳米管阵列表现出了良好的光电转化性能,在施加相对于标准氢电极1.23 V的偏压时,其光电流密度可以达到1.258 m A/cm2。  相似文献   

17.
以氟化铵的乙二醇溶液为电解液,采用电化学阳极氧化法在钛片表面构筑了一层结构有序、纳米级的TiO_2纳米管阵列膜层,应用扫描电子显微镜(SEM)对膜层的形貌进行了表征,利用X射线衍射(XRD)研究了样品的晶相、结构,并分析了阳极氧化电压对TiO_2纳米管尺寸和结构的影响。结果表明:阳极氧化电压对TiO_2纳米管阵列的结构起到关键的作用,随着纳米管的管径和长度的增加,表面积增大。研究了TiO_2纳米管阵列膜层结构对染料敏化太阳能电池(DSSC)性能的影响。结果表明:二氧化钛纳米管阵列薄膜的管径对电池的效率有显著影响,当管径越大时,填充因子变大,DSSC的开路电压降低,而短路电流变大,光电转换效率也随之提高。  相似文献   

18.
研究了银包覆和银-碳复合包覆对硅的结构和电化学性能的影响。采用XRD和TEM等手段分析了样品的结构和形貌,并采用恒电流充放电测试、循环伏安法和电化学阻抗法研究了改性处理前后硅负极的电化学性能。结果表明,硅/Ag/碳复合负极材料中,Ag纳米微粒以晶体的形式分布在硅颗粒的表面,一层无定形沥青炭包覆在硅/Ag复合颗粒的表面,这有利于提高硅颗粒的结构稳定性。电化学测试表明,与硅相比,硅/Ag/炭复合负极材料的电化学阻抗减小,电化学极化减弱,电化学反应的可逆性和循环寿命显著提高,第40次循环的比容量保持在390 m Ah g-1。  相似文献   

19.
在室温条件下, 用电化学沉积方法在铟锡氧化物(ITO)基底表面生长CdSe纳米棒阵列, 并利用X射线衍射(XRD)、 能量色散X射线(EDX)、 场发射扫描电子显微镜(
FESEM)和紫外 可见吸收光谱(UV Vis)表征CdSe纳米棒阵列的晶体结构和表面形貌, 考察其光电化学性能; 在标准三电极体系下, 测试CdSe纳米棒阵列电极的光电化学性能. 结果表明: 样品沿\[001\]方向择优生长, 并具有明显的光响应特性; 在光强为100 mW/cm2 的模拟太阳光照射下, 该电极光电流密度  相似文献   

20.
在阐述染料敏化TiO_2纳米晶太阳能电池的工作原理的基础上,对采用水热法制备出的TiO_2纳米颗粒、TiO_2微球以及TiO_2纳米杆,用扫描电子显微镜(SEM)对样品表面形貌进行表征,分析其优缺点。制备不同形貌的TiO_2光阳极,利用太阳能模拟器对的四种不同光阳极的染料敏化太阳能电池进行光电性能测试。结果表明:在同等光照条件下,采用复合三层结构的光阳极制成染料敏化纳米晶太阳能电池光电性能最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号