首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
基本蚁群算法的选择概率公式存在的缺陷,从信息素的更新策略方面入手,通过自适应地调整挥发系数对蚁群算法进行优化,并将自适应蚁群优化算法应用于置换流水车间调度问题.对几组仿真数据进行实验,结果表明该算法具有可行性,并且有一定的理论意义和较高的实际应用价值,是一种值得推广的求解置换流水车间问题算法.  相似文献   

2.
分析了布谷鸟算法的优化机理和特点,针对最小化最大完工时间的置换流水车间调度问题,采用基于最小位置值规则的随机键编码方式,应用布谷鸟算法进行求解.通过选取的标准算例对算法进行了仿真测试,并与萤火虫算法和粒子群算法进行对比,测试结果表明了该算法求解置换流水车间调度问题的有效性和优越性.该方法可作为解决流水线生产调度问题的一种有效方法.  相似文献   

3.
针对目标函数为Makespan的Blocking流水车间调度问题,设计了一种构造启发式算法.初始排序的产生从减少下游工件的滞留时间入手,结合有向图中对关键路径的分析,采用插入规则进行搜索的方法得到工件序列的近优排序.通过大量典型算例的计算,实验结果证明了设计的算法具有优越的性能.  相似文献   

4.
5.
No-Wait流水车间调度问题的特性是工件加工一旦开始,必须连续进行,不允许工件完成某一加工工序后在机器上滞留等待.本文针对目标函数为Makespan的No-Wait流水车间调度问题,从对目标函数结构的分析入手,提出了一种基于最小化工件间距离的初始排序策略和插入方法的启发式算法.通过对大量典型算例的实验后验证了提出的算法的有效性.  相似文献   

6.
提出用蚁群算法求解车间调度问题.车间调度问题是典型的非确定性多项式时间难问题,蚁群算法是一种分布式进化计算方法,具有鲁棒性,正反馈,并行性等特点,而且算法简单.给出了用蚁群算法求解车间调度问题的流程,并且用经典的JSP的样例对算法进行了测试,实验结果表明用蚁群算法可以求解得到车间调度问题的最优解或近似最优解.  相似文献   

7.
改进蚁群算法在车间作业调度中的应用研究   总被引:1,自引:0,他引:1  
研究了基于机器最短加工时间的一类车间作业调度问题,建立了多约束的数学模型,为解决蚁群算法收敛性差和易陷入局部最优的问题,提出了一种基于插入移动的领域搜索方法,并使用该领域搜索方法嵌入蚁群算法.采用国际著名的benchmark测试集FT06进行了实例验证,计算结果表明,该算法可收敛到最优值55,且最优值、平均值和标准差都优于蚁群算法,标准差远远小于蚁群算法.  相似文献   

8.
针对以装配完成时间为优化目标的分布式装配阻塞流水车间调度问题(DABFSP),提出一种协同帝王蝶优化(CMBO)算法.在算法的初始化阶段,CMBO有效利用分布式装配阻塞流水车间调度问题的特征,采用构造式的方法产生可行调度序列,并作为算法的初始解;在迭代过程中,CMBO利用两种协同的离散化算子更新种群;在局部搜索阶段,CMBO利用最优解的邻域信息进一步提升解的精度与质量.在以不同工件数、机器数、工厂数和产品数为组合的900个问题实例中,测试和比较了CMBO算法及其他先进对比算法的性能.实验结果及统计学分析表明:CMBO算法在求解分布式装配阻塞流水车间调度问题时优于其他两种对比算法.  相似文献   

9.
蚂蚁数目是影响蚁群算法性能的重要参数,常规蚁群算法在求解TSP时易于陷入局部最优解。文章针对该问题,提出了一种蚂蚁数目动态改变的蚁群算法,即每次周游时的蚂蚁数目是在一个范围内随机取值,该改进算法借用遗传算法中的排序选择策略对每次遍历时的蚂蚁位置进行初始化;分别对常规蚁群算法的TSP求解和改进蚁群算法的TSP求解进行了原理阐述,并对2种算法求解TSP的结果进行了Matlab仿真。对比仿真结果表明,改进的算法在求解TSP时,能够有效地跳出局部最优解,并能很好地收敛,它比常规蚁群算法的性能要优。  相似文献   

10.
针对置换流水车间调度问题(PFSP),以最小化最大完工时间为优化目标建立数学模型,设计了一种改进人工蜂群算法。该算法采用反向学习方法和混沌映射来生成初始种群,为使算法能够求解离散的调度问题,采用LRV规则将位置数值映射成工件排列顺序;在雇佣蜂阶段,融入差分进化算法的思想,加入高斯变异算子,使收敛速度加快;在跟随蜂阶段,加入自适应策略,将算法的勘探和开发能力进行平衡;在侦察蜂阶段,加入柯西变异算子,避免陷入局部极值。最后通过比较几种不同的算法,对Car算例以及部分Rec标准算例集进行仿真测试,验证该算法的有效性和优越性。  相似文献   

11.
针对生产车间中需要同时考虑减少生产时间、确保加工质量以及通过减少能耗而降低生产费用的需求,建立以完工时间、空闲时间、加工质量和机器能耗为目标的多目标混合流水车间调度模型,提出一种基于直觉模糊集相似度的最佳觅食算法.为有效求解此问题,提出基于Largest Order Value规则的双层整数编码方式,在机器层编码部分采用权重法来计算机器的选择概率.针对多目标优化,提出直觉模糊集相似度的解比较策略,采用直觉模糊集相似度的大小衡量Pareto解与理想解的相似程度,判断Pareto解的优劣.通过测试实例和实际案例,验证本算法求解多目标混合流水车间调度问题的有效性和可行性.  相似文献   

12.
用规则调度方法求解无等待流水车间调度问题   总被引:3,自引:1,他引:3  
在使用规则调度方法求解无等待最小化总拖期流水车间调度问题时,前提是计算工件的完工时间。提出了计算方法。计算机仿真测试了SPT、LPT、SWPT、EDD、WDD、WPD规则调度方法的性能。结果表明SPT性能最好,SWPT性能最差。  相似文献   

13.
14.
15.
将大型钢管企业的管加工调度问题抽象提炼为一类具有普遍意义的并行流水车间调度问题,建立了数学规划模型,并对其求解算法进行了探讨。  相似文献   

16.
蚁群算法是一种通过模拟自然界中蚂蚁觅食行为而发展而来的新型启发式仿生优化算法,提出至今被研究人员广泛应用于各种组合优化问题.最大团问题是图论中著名的NPC问题,本文对于基本蚁群算法进行了分析与讨论,针对基本蚁群算法的容易陷入局部最优解、收敛速度慢等问题进行了改进,提出了一种新型蚁群优化算法.本文提出的新型蚁群优化算法增加了结点度和历史选择次数表策略影响蚂蚁选点;另外提出了构造独立的局部信息素更新机制.最后通过对比实验验证,数据结果证明新提出的优化算法相对于基本蚁群算法的优越性和可行性.  相似文献   

17.
18.
为了解决工艺规划与车间调度集成(IPPS)问题,提出了一种改进的蚁群优化(ACO)算法.通过节点集、有向弧集、无向弧集,构建了一种基于图的IPPS优化模型.以零件加工时间作为启发式信息,设计蚂蚁在各节点间转移概率.通过蚂蚁访问图中不同的节点,构建对应的调度方案.根据不同阶段调度方案的最大完工时间调整各弧段信息素的挥发速度,提高了蚂蚁的搜索效率.为避免陷入局部收敛,通过重启算法和重置各弧段信息素初值,动态更新各弧段信息素量,以获得全局最优解.将该算法应用于具体的仿真实例,结果表明该算法能有效地解决工艺规划与调度集成问题,为企业生产提供借鉴.  相似文献   

19.
针对柔性作业车间调度问题,以最大完工时间最小化为目标提出了一种改进灰狼优化算法(IGWO),采用两段式的编码方式来构造算法个体位置与调度方案之间的关系,使用基于启发式规则的初始化种群方法来提高初始解的质量.为了平衡算法的全局搜索与局部搜索,提出一种基于双曲正切函数的非线性收敛因子公式,并在算法的个体更新阶段提出了一种基于适应度值的加权方法,在算法决策层嵌入了变邻域搜索算法.通过仿真实验表明,算法在求解柔性作业车间调度问题上是有效的.  相似文献   

20.
混合蚁群遗传算法在车间作业调度的应用研究   总被引:1,自引:0,他引:1  
提出了一种解决车间调度最短完成时间的有效的混合算法.将遗传算法与蚂蚁算法的融合,采用遗传算法生成信息素分布,利用蚂蚁算法求精确解,优势互补.应用该算法对Job-Shop车间作业调度问题的解进行编译,通过实例表明该算法是可行有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号