共查询到19条相似文献,搜索用时 62 毫秒
1.
基于遗传算法的神经网络权值优化 总被引:15,自引:0,他引:15
针对BP算法学习效率低、收敛速度慢,以及易陷入局部最优等缺点,提出了一种新型的、基于自然选择和基因遗传学原理的随机搜索算法——遗传算法(Genetic Algorithm),并论述了它在BP神经网络中权值优化的问题。仿真结果表明,用遗传算法优化BP神经网络的权值收敛速度快,并有效解决了BP算法易陷入局部最优的问题。 相似文献
2.
基于实数编码遗传算法的多层神经网络BP算法 总被引:19,自引:0,他引:19
提出用实数编码的遗传算法来优化多层神经网络的权值,并且将遗传算法与BP算法结合,能有效地避免BP算法陷入局部极小和遗传算法过早收敛,实验结果令人满意。 相似文献
3.
基于神经网络的电力系统谐波测量方法研究 总被引:1,自引:2,他引:1
提出了一种新的基于三角基函数神经网络的电力系统谐波测量方法,给出了该神经网络算法的收敛定理,并采用加窗插值算法修正基波频率的准确度.该方法不需要同步采样和整周期截断,可一次性获得电力系统基波及各次谐波的频率、幅值和相位.计算机仿真结果表明,该方法计算精度高,计算量小,收敛速度快. 相似文献
4.
针对遗传算法容易产生局值的问题,提出一种新的自适应遗传算法,改进遗传算子,通过比较两代之间的适应度评估值,选取适合的交叉率和变异率,保证了优秀个体进入下一代,而且避免了种群中最大适应度值的个体的交叉率和变异率为0的情况.最后,将改进后的算法应用于库存控制模型,实验表明,改进后的自适应遗传算法能避免局值,提高网络的收敛速度,改善了网络的学习性能. 相似文献
5.
将遗传算法引入神经网络盲均衡,利用其全局搜索能力强的特性来消除传统神经网络算法易陷入局部最优解、训练速度慢的缺点。采用两阶段寻优法,首先,通过遗传算法来为神经网络提供一个全局较优的局部搜索空间;其次,利用传统神经网络在这个局部空间进行更精确地搜索,最终实现盲均衡。计算机仿真表明,该算法能达到更好的收敛特性和均衡效果。 相似文献
6.
电力系统中谐波诊断的神经网络方法 总被引:2,自引:1,他引:2
本文提出了一种应用人工神经网络模型诊断电力系统中谐波含量的新方法。用误差反向传播模型(BP模型)取代传统的快速傅立叶变换方法,对BP模型进行训练,得到由电流(或电压)采样值映射出基波和谐波含量的BP模型。试验结果表明,该方法具有速度快、精度高的优点,硬件实现简单,同时具有在线应用的特点。 相似文献
7.
将遗传算法引入神经网络盲均衡,利用其全局搜索能力强的特性来消除传统神经网络算法易陷入局部最优解、训练速度慢的缺点。采用两阶段寻优法,首先,通过遗传算法来为神经网络提供一个全局较优的局部搜索空间;其次,利用传统神经网络在这个局部空间进行更精确地搜索,最终实现盲均衡。计算机仿真表明,该算法能达到更好的收敛特性和均衡效果。 相似文献
8.
基于遗传算法的神经网络学习算法研究 总被引:5,自引:0,他引:5
严太山 《湖南理工学院学报:自然科学版》2007,20(1):31-34
为了克服神经网络结构和参数设计的随机性及依赖于人的经验的缺点,提出了一种改进的基于遗传算法的BP神经网络学习算法。该算法结合了神经网络的快速并行性和遗传算法的全局搜索性,首先利用遗传算法对神经网络结构、初始连接权和阈值以及学习率和动量因子进行全面进化设计,在解空间中定位出较好的搜索空间,然后在进化神经网络中用训练样本再次寻优。通过利用该算法对XOR问题求解,证明了该算法的有效性,其收敛速度和精度均优于基本BP算法和附加动量项的BP算法。 相似文献
9.
基于遗传算法和BP神经网络的结构损伤识别 总被引:1,自引:1,他引:1
鉴于BP神经网络需要较长的训练时间、易陷入局部极小值、网络权值和阈值难确定等不足。运用遗传算法全局寻优的特点对BP网络的权值和阈值进行优化。同时运用遗传算法进行网络训练,避免网络收敛于局部极小值。通过对一根单梁实验数据的识别,结果表明两者的结合能对结构进行准确的识别。 相似文献
10.
针对国内外研究中现有团雾预测方式中出现的不足,建立了基于遗传算法优化的神经网络预测模型,用以对高速公路团雾的发生进行预测.在利用遗传算法得到BP神经网络的初始权值和阈值基础上,通过神经网络对输入的历史团雾气象数据进行学习训练,建立团雾预测模型.经优化的神经网络模型避免了由于神经网络初始权值、阈值难以确定所造成的网络震荡问题,以及神经网络计算过程中易陷入局部解的问题.实验结果表明,优化后的团雾预测模型具有较高的预测精度,为高速公路团雾的预测提供了新的方法与思路. 相似文献
11.
提出了一种基于目标反传的前馈式神经网络训练算法,该算法将网络的目标输出信息反传到网络的每一个隐层上,于是将神经网络的训练问题转化为求解一系列线性方程组和线性不等式组的问题,数值实验结果表明本文提出的方法与传统的BP算法相比提高了网络的训练速度. 相似文献
12.
针对误差反向传播(BP)算法和遗传算法各自的优点和不足,提出了遗传算法优化神经网络技术:利用遗传算法的全局搜索能力,对神经网络连接权进行优化,以遗传算法优化的初值作为BP神经网络的初始权值,再用BP算法训练网络.优化后的BP网络其误差的递减速度和收敛速度都比标准BP网络快,而且对学习速率调整要求更少.将遗传神经网络应用于混合气体定量识别的训练中,得到的最大误差由20.7 %降为12.1 %,平均误差从5.4 %降为3.5 %,识别效果得到了提高. 相似文献
13.
基于改进遗传算法的神经网络优化 总被引:1,自引:0,他引:1
针对在神经网络应用中,存在结构设计及权值训练算法的不足,提出一种新的基于混合编码方案的遗传算法.在算法中设计了用遗传算法全局优化神经网络拓扑结构和网络权值的新的编码方案,改进了适应度函数的设计和采用自适应的交叉和变异方法.试验结果表明本算法能有效地对神经网络的权值和结构同时优化,提高了训练效率. 相似文献
14.
Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural networks (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright application prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This resulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q^2 pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds. 相似文献
15.
改进型遗传神经网络在模式分类中的应用 总被引:1,自引:0,他引:1
为研究图像和语音的模式分类,提出一种采用可变长度串遗传算法(VGA)的进化神经网络.该算法可以全局搜索优化神经网络的结构,找到神经网络接近最优的连接权,再通过反向传播算法(BP),在该优化结构中找到最优连接权.对语音数据和SPOT图像数据的验证结果表明,在模式分类中,采用该算法的分类器(VGA-BP)的分类性能较贝叶斯(Bayes)分类器、最近邻规则(k-NN)分类器具有更高的分类精度. 相似文献
16.
基于遗传算法的人工神经网络学习算法 总被引:27,自引:0,他引:27
李建珍 《西北师范大学学报(自然科学版)》2002,38(2):33-37
为了克服和改进BP算法的不足,提出了一种基于遗传算法的神经网络学习算法,仿真结果表明,该算法具有无比的优越性,可避免BP算法易于陷入局部极小值,训练速度慢、误差函数必须可导、受网络结构的限制等缺陷。 相似文献
17.
遗传优化神经网络实现的人民币号码识别系统 总被引:1,自引:0,他引:1
目前人工神经网络广泛的应用于各种模式识别以及自动控制等系统中,该系统利用了图像去噪,分割,倾斜度调整,字符分割,字符归一化等图像预处理之后,将人民币号码图像进行特征提取,应用神经网络进行识别.同时,用遗传算法对人工神经网络进行网络权值的优化,加快了训练速度,提高了识别率. 相似文献
18.
用混合遗传算法实现神经网络快速训练 总被引:7,自引:0,他引:7
快速神经网络训练算法的研究是人们所关注的问题之一。经过分析与研究 ,遗传算法是一种全局并行随机搜索优化算法 ,具有很强的全局搜索能力 ,而 BP算法的局部搜索能力较强。文章将两者结合起来 ,形成一种混合遗传算法 ,并就混合遗传算法的原理及其在实现时所涉及到的许多策略问题进行了分析比较 ,仿真结果表明它具有收敛速度快和不会陷入局部极小的特点。 相似文献
19.
提出了一种基于粗糙集和遗传算法的改进BP神经网络算法.该算法首先对原始数据集进行属性约简,优化BP神经网络的输入变量;然后利用遗传算法全局搜索的特点,优化BP神经网络初始权重和阈值.将改进BP神经网络算法应用于客户分类,训练误差为5.92×10-12,测试总误差为0.00023;而改进前的一个比较理想的训练结果的训练误差为0.0016,测试总误差为0.073.Matlab仿真表明改进的BP神经网络算法有更好的训练精度和泛化能力. 相似文献