首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对不同工况下的数据无法直接训练并用于检测的问题,提出一种基于迁移成分分析和词包模型的诊断算法,对于用作训练的有标签源域数据和用作检验诊断的无标签目标域数据。首先使用短时傅里叶变换将两者转换为频域数据,其次通过迁移成分分析将两者的频谱能量映射到同一分布以建立相应的词包模型作为数据的特征,最后在源域数据的词包模型上训练出合适的分类器从而进行诊断。在西门子SQI-MFS平台实验数据集、凯斯西储大学公开数据集及机械故障预防技术协会MFPT(machinery failure prevention technology)数据集下的实验结果表明该算法是有效的。  相似文献   

2.
针对深度学习在嵌入式或移动端设备中用于故障诊断时,受限于有限的硬件资源而又需要有足够的效率和精度的应用需求,提出基于轻量级卷积神经网络的电机滚动轴承故障诊断方法.首先对滚动轴承的振动信号数据集进行连续小波变换生成固定尺寸的时频图,并以此方式生成数据集输入网络进行训练.使用测试集进行测试,结果表明,所生成的故障诊断预测网络模型具有较高的识别精度和识别速度,准确率达到99%.通过验证噪声对网络的影响,表明所使用的网络具有较好的鲁棒性和泛化能力.  相似文献   

3.
针对深度学习在嵌入式或移动端设备中用于故障诊断时,受限于有限的硬件资源而又需要有足够的效率和精度的应用需求,提出基于轻量级卷积神经网络的电机滚动轴承故障诊断方法。首先对滚动轴承的振动信号数据集进行连续小波变换生成固定尺寸的时频图,并以此方式生成数据集输入网络进行训练。使用测试集进行测试,结果表明,所生成的故障诊断预测网络模型具有较高的识别精度和识别速度,准确率达到99%。通过验证噪声对网络的影响,表明所使用的网络具有较好的鲁棒性和泛化能力。  相似文献   

4.
提出一种基于改进GAN(生成对抗网络)的滚动轴承故障诊断方法,以振动信号作为主要依据,结合连续小波变换处理非平稳信号的能力和半监督生成对抗网络(semi-supervised generation adversarial networks,SSGAN)处理和识别图像的功能,在半监督生成对抗网络的基础上引入条件模型并对损失函数进行优化,指导生成器和判别器的训练.首次将改进GAN算法应用于故障诊断领域并利用其生成模型和半监督学习能力分别解决了样本数据不足和样本标记问题.实验表明,连续小波变换与改进GAN 结合的故障诊断方法与其他主流诊断方法相比能达到较高准确率.  相似文献   

5.
针对传统分析方法对于轴承在变速情况下的故障诊断较为困难的问题,提出一种基于格拉姆角差场(Gramian angular difference field,GADF)与引入迁移学习的ResNet34模型对变速轴承的故障诊断方法.首先利用GADF对一维时序振动信号进行编码,转换成二维图像,产生相应的故障图,再将这些故障图输入引用迁移学习的残差网络(ResNet)自动进行故障特征提取及分类.为了验证该方法的有效性,综合对比其他方法,本文方法在西储大学轴承数据集上表现更好.最后对加拿大渥太华大学的变速轴承数据集进行诊断,检验其在变速情况下的分类性能.结果表明,在变速情况下,所提方法可达到较高的诊断精度.  相似文献   

6.
运用频率指标诊断电机轴承故障的神经网络法   总被引:6,自引:0,他引:6  
电机滚动轴承的时域振动信号经过快速傅里叶变换和自功率谱处理后,可以获得电机滚动轴承振动的固有频率,然后运用该频率指标,利用多层反向传播前馈型神经网络,通过神经网络的学习和推广两个阶段,可以实现对轴承故障的自动分类诊断。对一电机滚动轴承的实验表明,该方法行之有效,对工程应用具有较高的实用价值。与其它损伤识别指标相比,诊断精度相对提高率均大于11%,说明频率指标对结构的损伤具有更高的灵敏度。  相似文献   

7.
针对目前大多数基于人工智能的轴承剩余使用寿命(remaining useful life,RUL)预测方法不能很好地预测不同工况下轴承剩余寿命的问题,提出了一种基于迁移学习的寿命预测方法,对不同工况下的轴承进行剩余寿命预测.对采集的轴承原始振动信号进行傅里叶变换得到频域信号,以卷积神经网络和长短时记忆网络作为特征提取器...  相似文献   

8.
在变工况轴承故障诊断任务中,领域自适应方法仅仅对两个域进行全局对齐,而未进行相应类别的对齐,为解决上述问题,提出了一种两级混淆对抗域自适应网络.该网络由一个特征生成器、两个标签分类器及一个辅助分类器组成.网络使用源域样本帮助两个任务分类器学习,同时在辅助分类器上构造了基于两级域混淆损失的对抗性学习目标函数,通过对抗训练,驱动特征生成器生成类别对齐的特征.两个公共轴承数据集的实验结果表明,该方法的平均诊断准确率远远高于传统深度学习算法和其它四种域自适应算法.  相似文献   

9.
针对轴承故障样本少导致识别精度低的问题,提出一种基于无监督迁移成分分析(unsupervised transfer component analysis,UTCA)和深度信念网络(deep belief network,DBN)的故障诊断方法。首先利用UTCA的核函数将不同工况样本特征映射到一个共享再生核Hilbert空间中,使得源域和目标域样本集更加相似,并通过最大均值偏差嵌入法(maximum mean discrepancy embedding,MMDE)判断能够迁移的源域数据,将源域样本迁移到目标域中,为深度学习提供充足的训练样本,解决了实际故障样本较少的问题;然后采用DBN模型对源域样本进行训练,再对映射后无标记的目标域样本进行故障诊断分析。利用不同工况下的滚动轴承实验数据进行算法验证,结果表明,与普通DBN、SVM、BPNN以及传统机器学习-UTCA融合方法相比,本文方法对滚动轴承故障的诊断精度更高。  相似文献   

10.
基于小波包-Elman神经网络的电机轴承故障诊断   总被引:1,自引:0,他引:1  
根据电机滚动轴承振动信号的频域变化特征,通过小波包分析将轴承振动信号分解在不同的频带之内,以频带能量作为识别故障的特征向量,应用容错性强、动态性能良好的Elman神经网络建立从特征向量到故障模式之间的映射,实现电机轴承故障分类。仿真结果表明,采用小波包和Elman神经网络相结合的方法能更加有效地实现电机轴承的故障诊断。  相似文献   

11.
根据电机滚动轴承振动信号的频域变化特征,通过小波包分析将轴承振动信号分解在不同的频带之内,以频带能量作为识别故障的特征向量,应用容错性强、动态性能良好的Elman神经网络建立从特征向量到故障模式之间的映射,实现电机轴承故障分类。仿真结果表明,采用小波包和Elman神经网络相结合的方法能更加有效地实现电机轴承的故障诊断。  相似文献   

12.
介绍了采用振动诊断技术,对机车牵引机轴承故障进行动态检测的方法。利用简易诊断法可判断电机轴承有无异常,而精密诊断法则进一步判断电机在发生故障的部位,借助诊断分析系统,对所测信号进行频谱分析,根据电机轴承不同部位故障的特征频率,确定故障程度和部位,以便及时采取防范措施。  相似文献   

13.
状态监测信号中的冲击特征往往能够指示旋转机械的故障。为了准确提取振动信号中的冲击分量,提出一种新的时频分析方法—时间重排多重同步压缩S变换(time-reassigned multisynchrosqueezing S-transform, TMSSST)。首先对信号进行S变换得到一个相对模糊的时频分布(time-frequency representation, TFR);然后在时间方向对TFR进行能量重排,同时实施多次迭代以提高时频分布的可读性;最后引入一种脉冲提取算法用于降低信号中的噪声。所提方法结合了S变换自适应调节时频分辨率的优势和多重同步压缩能量集中度高的特性。模拟轴承故障信号和实验信号验证了所提方法在工程应用中的优越性和鲁棒性。  相似文献   

14.
轴承疲劳剥落的早期诊断方法   总被引:4,自引:0,他引:4  
通过大量的试验,对振动信号进行分析,总结了轴承振动信号中各参数 的变化规律,给出了峰值、有效值、峭度等参数的变化趋势,给出了判断轴承剥落的早期诊断方法。  相似文献   

15.
基于时频分析的内燃机曲轴轴承磨损故障的诊断研究   总被引:7,自引:1,他引:7  
内燃机曲轴轴承所受到的冲击信号是非平稳、时变信号,用传统的诊断方法难以进行故障的早期发现和诊断.论文运用振动测试技术,测取不同间隙下主轴承座及机体上的振动信号,然后充分利用了小波包无冗余、无疏漏、正交地分解信号到独立的频带内的能力及时频分布对时变信号良好的描述能力,发展了一种基于小渡包的重分配平滑伪魏格纳维尔分布的时频分析方法.通过对振动信号进行了分析比较,其干扰项少而分辨率高,既能定性揭示曲轴轴承磨损故障的变化规律,又能定量地诊断该故障.  相似文献   

16.
针对实际工业运行中带标签的轴承故障数据难以获取,导致有监督学习故障诊断效果不佳的问题,提出一种基于无监督迁移学习(transfer learning, TL)的核范数最大化轴承故障诊断方法。该方法通过结构优化深度卷积神经网络(structure optimized deep convolutional neural networks, SOCNN)进行故障特征提取,利用最大均值差异(maximum mean discrepancy, MMD)提升源域和目标域的分布相似度,并结合快速批量核范数最大化(fast batch nuclear-norm maximization, FBNM)来提升目标域批量输出矩阵的可分辨性和多样性。实验结果表明:所提方法在不同噪声环境中都具有较高的诊断精度,能准确识别出轴承的故障类型和故障危害等级,为轴承故障诊断提供有效技术支撑。  相似文献   

17.
针对轴承在实时监测中特征参数值的不确定性,基于模糊逻辑,探讨轴承故障诊断中的模糊诊断方法,以提高诊断系统的精确性。  相似文献   

18.
通过大量实验分析,论述了各特征因子对滚动轴承点蚀(剥落)或磨损故障诊断的敏感度,各因子受转速或径向力变动的影响以及运行时间对各因子变动趋势的影响。分析结果可供诊断滚动轴承故障时采用。  相似文献   

19.
张云鹏  盖强 《应用科技》2011,(7):26-28,34
为了研究滚动轴承信号的非平稳特征,应用时频分析技术是一种较好的选择.研究了S变换,该方法是将短时傅里叶变换同小波变换结合起来发展的一种新算法.对多种时频分析方法进行了比较,得出S变换优于其他方法的一些特点,提出基于S变换的滚动轴承信号瞬态特征检测方法.结果表明,S变换能够以较高时频分辨率表示轴承振动中的非平稳特征,能反映出信号时频谱真实的物理意义,并且计算速度快.诊断结果验证了该方法可以用于滚动轴承的故障诊断.  相似文献   

20.
时频分布是机械滚动轴承故障信号的有效分析方法,特殊情况下的机械故障信号或噪声属于非高斯Alpha()稳定分布,传统的Stockwell变换(S变换)时频方法性能退化甚至失效。本文基于S变换时频和分数低阶矩提出了一种分数低阶S变换时频分布算法,为了减少计算量及在线及时分析信号,提出了一种快速分数低阶S变换时频算法。仿真结果表明,所提出的分数低阶S变换时频算法及其快速算法能很好的工作在高斯噪声和稳定分布噪声环境,性能优于已有的S变换时频。在实际应用中,所提出的时频算法能够较好的提取机械轴承故障信号的故障特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号