首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantum criticality is associated with a system composed of a nearly infinite number of interacting quantum degrees of freedom at zero temperature, and it implies that the system looks on average the same regardless of the time- and length scale on which it is observed. Electrons on the atomic scale do not exhibit such symmetry, which can only be generated as a collective phenomenon through the interactions between a large number of electrons. In materials with strong electron correlations a quantum phase transition at zero temperature can occur, and a quantum critical state has been predicted, which manifests itself through universal power-law behaviours of the response functions. Candidates have been found both in heavy-fermion systems and in the high-transition temperature (high-T(c)) copper oxide superconductors, but the reality and the physical nature of such a phase transition are still debated. Here we report a universal behaviour that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a quantum phase transition of an unconventional kind in the high-T(c) superconductors.  相似文献   

2.
3.
Parker CV  Aynajian P  da Silva Neto EH  Pushp A  Ono S  Wen J  Xu Z  Gu G  Yazdani A 《Nature》2010,468(7324):677-680
Doped Mott insulators have a strong propensity to form patterns of holes and spins often referred to as stripes. In copper oxides, doping also gives rise to the pseudogap state, which can be transformed into a high-temperature superconducting state with sufficient doping or by reducing the temperature. A long-standing issue has been the interplay between the pseudogap, which is generic to all hole-doped copper oxide superconductors, and stripes, whose static form occurs in only one family of copper oxides over a narrow range of the phase diagram. Here we report observations of the spatial reorganization of electronic states with the onset of the pseudogap state in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+x), using spectroscopic mapping with a scanning tunnelling microscope. We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes. As expected, the stripe patterns are strongest when the hole concentration in the CuO(2) planes is close to 1/8 (per copper atom). Although they demonstrate that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the phase diagram, our experiments indicate that the stripes are a consequence of pseudogap behaviour rather than its cause.  相似文献   

4.
Li Y  Balédent V  Barisić N  Cho Y  Fauqué B  Sidis Y  Yu G  Zhao X  Bourges P  Greven M 《Nature》2008,455(7211):372-375
The pseudogap region of the phase diagram is an important unsolved puzzle in the field of high-transition-temperature (high-T(c)) superconductivity, characterized by anomalous physical properties. There are open questions about the number of distinct phases and the possible presence of a quantum-critical point underneath the superconducting dome. The picture has remained unclear because there has not been conclusive evidence for a new type of order. Neutron scattering measurements for YBa(2)Cu(3)O(6+delta) (YBCO) resulted in contradictory claims of no and weak magnetic order, and the interpretation of muon spin relaxation measurements on YBCO and of circularly polarized photoemission experiments on Bi(2)Sr(2)CaCu(2)O(8+delta)(refs 12, 13) has been controversial. Here we use polarized neutron diffraction to demonstrate for the model superconductor HgBa(2)CuO(4+delta) (Hg1201) that the characteristic temperature T* marks the onset of an unusual magnetic order. Together with recent results for YBCO, this observation constitutes a demonstration of the universal existence of such a state. The findings appear to rule out theories that regard T* as a crossover temperature rather than a phase transition temperature. Instead, they are consistent with a variant of previously proposed charge-current-loop order that involves apical oxygen orbitals, and with the notion that many of the unusual properties arise from the presence of a quantum-critical point.  相似文献   

5.
A change in 'symmetry' is often observed when matter undergoes a phase transition-the symmetry is said to be spontaneously broken. The transition made by underdoped high-transition-temperature (high-Tc) superconductors is unusual, in that it is not a mean-field transition as seen in other superconductors. Rather, there is a region in the phase diagram above the superconducting transition temperature Tc (where phase coherence and superconductivity begin) but below a characteristic temperature T* where a 'pseudogap' appears in the spectrum of electronic excitations. It is therefore important to establish if T* is just a cross-over temperature arising from fluctuations in the order parameter that will establish superconductivity at Tc (refs 3, 4), or if it marks a phase transition where symmetry is spontaneously broken. Here we report that, for a material in the pseudogap state, left-circularly polarized photons give a different photocurrent from right-circularly polarized photons. This shows that time-reversal symmetry is spontaneously broken below T*, which therefore corresponds to a phase transition.  相似文献   

6.
With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.  相似文献   

7.
Although crystals are usually quite stable, they are sensitive to a disordered environment: even an infinitesimal amount of impurities can lead to the destruction of crystalline order. The resulting state of matter has been a long-standing puzzle. Until recently it was believed to be an amorphous state in which the crystal would break into 'crystallites'. But a different theory predicts the existence of a novel phase of matter: the so-called Bragg glass, which is a glass and yet nearly as ordered as a perfect crystal. The 'lattice' of vortices that contain magnetic flux in type II superconductors provide a good system to investigate these ideas. Here we show that neutron-diffraction data of the vortex lattice provides unambiguous evidence for a weak, power-law decay of the crystalline order characteristic of a Bragg glass. The theory also predicts accurately the electrical transport properties of superconductors; it naturally explains the observed phase transitions and the dramatic jumps in the critical current associated with the melting of the Bragg glass. Moreover, the model explains experiments as diverse as X-ray scattering in disordered liquid crystals and the conductivity of electronic crystals.  相似文献   

8.
该文给出了素c-半环与半素c-半环的刻画定理.  相似文献   

9.
A magnetic field penetrates a superconductor through an array of 'vortices', each of which carries one quantum of flux that is surrounded by a circulating supercurrent. In this vortex state, the resistivity is determined by the dynamical properties of the vortex 'matter'. For the high-temperature copper oxide superconductors (see ref.1 for a theoretical review), the vortex phase can be a 'solid', in which the vortices are pinned, but the solid can 'melt' into a 'liquid' phase, in which their mobility gives rise to a finite resistance. (This melting phenomenon is also believed to occur in conventional superconductors, but in an experimentally inaccessible part of the phase diagram.) For the case of YBa2Cu3O7, there are indications of the existence of a critical point, at which the character of the melting changes. But neither the thermodynamic nature of the melting, nor the phase diagram in the vicinity of the critical point, has been well established. Here we report measurements of specific heat and magnetization that determine the phase diagram in this material to 26 T, well above the critical point. Our results reveal the presence of a reversible second-order transition above the critical point. An unusual feature of this transition-namely, that the high-temperature phase is the less symmetric in the sense of the Landau theory-is in accord with theoretical predictions of a transition to a second vortex-liquid phase.  相似文献   

10.
We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV3Sb5 is a chiral flux phase.Considering the symmetry of the Kago...  相似文献   

11.
One view of the high-transition-temperature (high-Tc) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be 'mapped' onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state-for example, a conventional metal or an ordered, striped phase-which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-Tc superconductor, the applied field that imposes the vortex lattice also induces 'striped' antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.  相似文献   

12.
Feld M  Fröhlich B  Vogt E  Koschorreck M  Köhl M 《Nature》2011,480(7375):75-78
Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.  相似文献   

13.
Controlling a phase of matter by coherently manipulating specific vibrational modes has long been an attractive (yet elusive) goal for ultrafast science. Solids with strongly correlated electrons, in which even subtle crystallographic distortions can result in colossal changes of the electronic and magnetic properties, could be directed between competing phases by such selective vibrational excitation. In this way, the dynamics of the electronic ground state of the system become accessible, and new insight into the underlying physics might be gained. Here we report the ultrafast switching of the electronic phase of a magnetoresistive manganite via direct excitation of a phonon mode at 71 meV (17 THz). A prompt, five-order-of-magnitude drop in resistivity is observed, associated with a non-equilibrium transition from the stable insulating phase to a metastable metallic phase. In contrast with light-induced and current-driven phase transitions, the vibrationally driven bandgap collapse observed here is not related to hot-carrier injection and is uniquely attributed to a large-amplitude Mn-O distortion. This corresponds to a perturbation of the perovskite-structure tolerance factor, which in turn controls the electronic bandwidth via inter-site orbital overlap. Phase control by coherent manipulation of selected metal-oxygen phonons should find extensive application in other complex solids--notably in copper oxide superconductors, in which the role of Cu-O vibrations on the electronic properties is currently controversial.  相似文献   

14.
借助于优超理论,在适当的假设下建立了如下的Jensen-Pe(c)ari(c)-Svrtan型不等式f(A(x))/f(A(φx))=fn,n(x)/fn,n(φx)≤(≥)...≤(≥)fk+1,n(x)/fk+1,n(φx)≤(≥)fk,n(x)/fk,n(φx)≤(≥)...≤(≥)f1,n(x)/f1,n(φx)=A(f(x))/A(f(φx)),这里,A(·)表示算术平均,φ:[a,b]→R, f:[a,maxt∈[a,b]{φ(t)}]→R, fk,n(x):=1/(nk)∑1≤i1<...<ik≤nf(xi1+xi2+...+xik/k), x∈[a,b]n.  相似文献   

15.
Chandra P  Coleman P  Mydosh JA  Tripathi V 《Nature》2002,417(6891):831-834
When matter is cooled from high temperatures, collective instabilities develop among its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu(2)Si(2) is one such example, where the order responsible for the sharp specific heat anomaly at T(0) = 17 K has remained unidentified despite more than seventeen years of effort. In URu(2)Si(2), the coexistence of large electron electron repulsion and antiferromagnetic fluctuations leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favoured. Here we develop a proposal for the nature of the hidden order in URu(2)Si(2). We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17 K transition. We make detailed predictions for the outcome of neutron scattering measurements based on this proposal, so that it can be tested experimentally.  相似文献   

16.
研究了正规化解析函数H的子类B(λ,α,A,B,σ)的Fekete-Szeg(o)不等式,对于任意的f(z)=z+a2,+a3z3+…∈B(λ,α,A,B,σ)及任意的复参数u,应用解析函数的基本不等式和分析技巧,得到了M1(α,λ,A,B)的精确上界.  相似文献   

17.
非线性励磁控制对发电机进相运行稳定性的改善   总被引:1,自引:0,他引:1  
总结了非线性励磁控制对改善发电机进相运行稳定性的实验结果,验证了非线性控制理论中微分几何设计方法的正确性。在实验研究中,着重比较了比例-积分-微分控制器(PID)、电力系统镇定器(PSS)、线性最优励磁控制器(LOEC)和非线性励磁控制器(NEC)等四种不同的励磁控制方式对发电机进相运行的影响。实验结果表明,在改善发电机进相运行稳定性方面,非线性励磁控制较其它几种控制方式具有明显的优越性。在电网低谷进相运行中它是有较大潜力的技术措施。  相似文献   

18.
Hidden in a sea of microbes   总被引:14,自引:0,他引:14  
Karl DM 《Nature》2002,415(6872):590-591
  相似文献   

19.
利用 Mathematica软件求解了角动量 l=1的系统在强外加旋转磁场下的含时间 Schr dinger方程 ,得出了非绝热条件下的精确解 ,给出了任意初始态在非绝热条件下成为周期态的条件。比较绝热条件下瞬时态的 Berry相和非绝热过程的 Aharonov- Anandan相因子 ,发现在磁场缓慢旋转的极限下二者趋于一致。还利用算符分解方法给出了任意大l的量系统的解的形式 ,并对 l=1的情况得出了与 Mathe-matica精确解法同样的结果 ,从另一个角度给出了非绝热Berry相。该方法还可以推广到研究耦合自旋链模型的拓扑相因子  相似文献   

20.
简要介绍了Hg-系高温超导体的特性、合成技术、BaO-CaO-CuO三元系相图和相图在先驱物配制中的应用研究的情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号