首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li Y  Balédent V  Barisić N  Cho Y  Fauqué B  Sidis Y  Yu G  Zhao X  Bourges P  Greven M 《Nature》2008,455(7211):372-375
The pseudogap region of the phase diagram is an important unsolved puzzle in the field of high-transition-temperature (high-T(c)) superconductivity, characterized by anomalous physical properties. There are open questions about the number of distinct phases and the possible presence of a quantum-critical point underneath the superconducting dome. The picture has remained unclear because there has not been conclusive evidence for a new type of order. Neutron scattering measurements for YBa(2)Cu(3)O(6+delta) (YBCO) resulted in contradictory claims of no and weak magnetic order, and the interpretation of muon spin relaxation measurements on YBCO and of circularly polarized photoemission experiments on Bi(2)Sr(2)CaCu(2)O(8+delta)(refs 12, 13) has been controversial. Here we use polarized neutron diffraction to demonstrate for the model superconductor HgBa(2)CuO(4+delta) (Hg1201) that the characteristic temperature T* marks the onset of an unusual magnetic order. Together with recent results for YBCO, this observation constitutes a demonstration of the universal existence of such a state. The findings appear to rule out theories that regard T* as a crossover temperature rather than a phase transition temperature. Instead, they are consistent with a variant of previously proposed charge-current-loop order that involves apical oxygen orbitals, and with the notion that many of the unusual properties arise from the presence of a quantum-critical point.  相似文献   

2.
A change in 'symmetry' is often observed when matter undergoes a phase transition-the symmetry is said to be spontaneously broken. The transition made by underdoped high-transition-temperature (high-Tc) superconductors is unusual, in that it is not a mean-field transition as seen in other superconductors. Rather, there is a region in the phase diagram above the superconducting transition temperature Tc (where phase coherence and superconductivity begin) but below a characteristic temperature T* where a 'pseudogap' appears in the spectrum of electronic excitations. It is therefore important to establish if T* is just a cross-over temperature arising from fluctuations in the order parameter that will establish superconductivity at Tc (refs 3, 4), or if it marks a phase transition where symmetry is spontaneously broken. Here we report that, for a material in the pseudogap state, left-circularly polarized photons give a different photocurrent from right-circularly polarized photons. This shows that time-reversal symmetry is spontaneously broken below T*, which therefore corresponds to a phase transition.  相似文献   

3.
建议高密物质中子化后出现夸克集团相,这是一种带色的中子.分析了相应温度和密度.讨论了新相的自族长程序和类铁磁的畴状结构.  相似文献   

4.
Motoyama EM  Yu G  Vishik IM  Vajk OP  Mang PK  Greven M 《Nature》2007,445(7124):186-189
High-transition-temperature (high-T(c)) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping and appears to overlap with the superconducting phase. The archetypal electron-doped compound Nd2-xCexCuO4+/-delta (NCCO) shows bulk superconductivity above x approximately 0.13 (refs 3, 4), while evidence for antiferromagnetic order has been found up to x approximately 0.17 (refs 2, 5, 6). Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies, arises from a build-up of spin correlations, in agreement with recent theoretical proposals.  相似文献   

5.
Jin K  Butch NP  Kirshenbaum K  Paglione J  Greene RL 《Nature》2011,476(7358):73-75
Although it is generally accepted that superconductivity is unconventional in the high-transition-temperature copper oxides, the relative importance of phenomena such as spin and charge (stripe) order, superconductivity fluctuations, proximity to a Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate. In electron-doped copper oxides, the absence of an anomalous pseudogap phase in the underdoped region of the phase diagram and weaker electron correlations suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic spin fluctuations are the dominant feature. Here we report a study of magnetotransport in thin films of the electron-doped copper oxide La(2?-?x)Ce(x)CuO(4). We show that a scattering rate that is linearly dependent on temperature--a key feature of the anomalous normal state properties of the copper oxides--is correlated with the electron pairing. We also show that an envelope of such scattering surrounds the superconducting phase, surviving to zero temperature when superconductivity is suppressed by magnetic fields. Comparison with similar behaviour found in organic superconductors strongly suggests that the linear dependence on temperature of the resistivity in the electron-doped copper oxides is caused by spin-fluctuation scattering.  相似文献   

6.
The superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (T(c)) in conventional BCS superconductors. In underdoped high-T(c) superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above T(c) (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above T(c) is one of the central questions in high-T(c) research. Although some experimental evidence suggests that the two gaps are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap that opens at T(c) and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments.  相似文献   

7.
The observation of vanishing electrical resistance in condensed matter has led to the discovery of new phenomena such as, for example, superconductivity, where a zero-resistance state can be detected in a metal below a transition temperature T(c) (ref. 1). More recently, quantum Hall effects were discovered from investigations of zero-resistance states at low temperatures and high magnetic fields in two-dimensional electron systems (2DESs). In quantum Hall systems and superconductors, zero-resistance states often coincide with the appearance of a gap in the energy spectrum. Here we report the observation of zero-resistance states and energy gaps in a surprising setting: ultrahigh-mobility GaAs/AlGaAs heterostructures that contain a 2DES exhibit vanishing diagonal resistance without Hall resistance quantization at low temperatures and low magnetic fields when the specimen is subjected to electromagnetic wave excitation. Zero-resistance-states occur about magnetic fields B = 4/5 Bf and B = 4/9 Bf, where Bf = 2pifm*/e,m* is the electron mass, e is the electron charge, and f is the electromagnetic-wave frequency. Activated transport measurements on the resistance minima also indicate an energy gap at the Fermi level. The results suggest an unexpected radiation-induced, electronic-state-transition in the GaAs/AlGaAs 2DES.  相似文献   

8.
Iguchi I  Yamaguchi T  Sugimoto A 《Nature》2001,412(6845):420-423
Superconductors show zero resistance to electric current, and expel magnetic flux (the Meissner effect) below the transition temperature (Tc). In conventional superconductors, the 'Cooper pairs' of electrons that are responsible for superconductivity form only below Tc. In the unconventional high-Tc superconductors, however, a strong electron correlation is essential for pair formation: there is evidence that some pairs are formed above Tc in samples that have less than the optimal density of charge carriers (underdoped) and an energy gap-the 'pseudogap'-appears to be present. Moreover, excitations that look like the vortices that carry magnetic flux inside the superconducting state have been reported above Tc (refs 6, 7). Although the origin of the pseudogap remains controversial, phase fluctuations above Tc, leading to some form of local superconductivity or local pairing, seem essential. Here we report magnetic imaging (scanning SQUID microscopy) of La2-xSrxCuO4 thin films. Clear quantized vortex patterns are visible below Tc (18-19 K), and we observe inhomogeneous magnetic domains that persist up to 80 K. We interpret the data as suggesting the existence of diamagnetic regions that are precursors to the Meissner state.  相似文献   

9.
Chen TY  Tesanovic Z  Liu RH  Chen XH  Chien CL 《Nature》2008,453(7199):1224-1227
Since the discovery of superconductivity in the high-transition-temperature (high-T(c)) copper oxides two decades ago, it has been firmly established that the CuO(2) plane is essential for superconductivity and gives rise to a host of other very unusual properties. A new family of superconductors with the general composition of LaFeAsO(1-x)F(x) has recently been discovered and the conspicuous lack of the CuO(2) planes raises the tantalizing question of a different pairing mechanism in these oxypnictides. The superconducting gap (its magnitude, structure, and temperature dependence) is intimately related to pairing. Here we report the observation of a single gap in the superconductor SmFeAsO(0.85)F(0.15) with T(c) = 42 K as measured by Andreev spectroscopy. The gap value of 2Delta = 13.34 +/- 0.3 meV gives 2Delta/k(B)T(c) = 3.68 (where k(B) is the Boltzmann constant), close to the Bardeen-Cooper-Schrieffer (BCS) prediction of 3.53. The gap decreases with temperature and vanishes at T(c) in a manner consistent with the BCS prediction, but dramatically different from that of the pseudogap behaviour in the copper oxide superconductors. Our results clearly indicate a nodeless gap order parameter, which is nearly isotropic in size across different sections of the Fermi surface, and are not compatible with models involving antiferromagnetic fluctuations, strong correlations, the t-J model, and the like, originally designed for the high-T(c) copper oxides.  相似文献   

10.
在近30年间,由于中子源和散射装置的改进,中子散射在凝聚态物质中的应用日益广泛,在许多方面是其他(X射线、电子、激光、同步辐射等)散射技术不可比拟的.在简单评述供散射用的中子源和散射实验技术进展之后,重点介绍中子散射在凝聚态物质研究中的应用,它们包括晶体结构和磁结构的测定、表面、界面和薄膜的表征、测定结构涨落、磁涨落的现代相变研究、畸变、无序系统(包括分形和小角散射)和高分子材料、高Tc氧化物超导体的研究。  相似文献   

11.
Xu ZA  Ong NP  Wang Y  Kakeshita T  Uchida S 《Nature》2000,406(6795):486-488
Two general features of a superconductor, which appear at the critical temperature, are the formation of an energy gap and the expulsion of magnetic flux (the Meissner effect). In underdoped copper oxides, there is strong evidence that an energy gap (the pseudogap) opens up at a temperature significantly higher than the critical temperature (by 100-220 K). Certain features of the pseudogap suggest that it is closely related to the gap that appears at the critical temperature (for example, the variation of the gap magnitudes around the Fermi surface and their maximum amplitudes are very similar). However, the Meissner effect is absent in the pseudogap state. The nature of the pseudogap state, and its relation (if any) to the superconducting state are central issues in understanding copper oxide superconductivity. Recent evidence suggests that, in the underdoped regime, the Meissner state is destroyed above the critical temperature by strong phase fluctuations (as opposed to a vanishing of the superfluid density). Here we report evidence for vortices (or vortex-like excitations) in La(2-x)Sr(x)CuO4 at temperatures significantly above the critical temperature. A thermal gradient is applied to the sample in a magnetic field. Vortices are detected by the large transverse electric field produced as they diffuse down the gradient (the Nernst effect). We find that the Nernst signal is anomalously enhanced at temperatures as high as 150 K.  相似文献   

12.
13.
Yamaguchi A  Kobayashi S  Ishimoto H  Kojima H 《Nature》2006,444(7121):909-912
The magnetic properties of (3)He in its various phases originate from the interactions among the nuclear spins. The spin-polarized 'ferromagnetic' superfluid (3)He A(1) phase (which forms below 3 mK between two transition temperatures, T(c1) and T(c2), in an external magnetic field) serves as a material in which theories of fundamental magnetic processes and macroscopic quantum spin phenomena may be tested. Conventionally, the superfluid component of the A(1) phase is understood to contain only the majority spin condensate, having energetically favoured paired spins directed along the external field and no minority spin condensate having paired spins in the opposite direction. Because of difficulties in satisfying both the ultralow temperature and high magnetic field required to produce a substantial phase space, there exist few studies of spin dynamics phenomena that could be used to test the conventional view of the A(1) phase. Here we develop a mechanical spin density detector that operates in the required regime, enabling us to perform measurements of spin relaxation in the A(1) phase as a function of temperature, pressure and magnetic field. Our mechanical spin detector is based in principle on the magnetic fountain effect; spin-polarized superfluid motion can be induced both magnetically and mechanically, and we demonstrate the feasibility of increasing spin polarization by a mechanical spin filtering process. In the high temperature range of the A(1) phase near T(c1), the measured spin relaxation time is long, as expected. Unexpectedly, the spin relaxation rate increases rapidly as the temperature is decreased towards T(c2). Our measurements, together with Leggett-Takagi theory, demonstrate that a minute presence of minority spin pairs is responsible for this unexpected spin relaxation behaviour. Thus, the long-held conventional view that the A(1) phase contains only the majority spin condensate is inadequate.  相似文献   

14.
The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-T(c)) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap--a suppression of the accessible electronic states at the Fermi level in the normal state of high-T(c) superconductors-has been interpreted as either a precursor to superconductivity or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point. Here we report the existence of a second order parameter hidden within the superconducting phase of the underdoped (electron-doped) high-T(c) superconductor Pr2-xCe(x)CuO4-y and the newly synthesized electron-doped material La2-xCe(x)CuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-T(c) superconductivity. This supports the picture that the physics of high-T(c) superconductors is determined by the interplay between competing and coexisting ground states.  相似文献   

15.
Materials in which magnetic and electric order coexist--termed 'multiferroics' or 'magnetoelectrics'--have recently become the focus of much research. In particular, the simultaneous occurrence of ferromagnetism and ferroelectricity, combined with an intimate coupling of magnetization and polarization via magnetocapacitive effects, holds promise for new generations of electronic devices. Here we present measurements on a simple cubic spinel compound with unusual, and potentially useful, magnetic and electric properties: it shows ferromagnetic order coexisting with relaxor ferroelectricity (a ferroelectric cluster state with a smeared-out phase transition), both having sizable ordering temperatures and moments. Close to the ferromagnetic ordering temperature, the magnetocapacitive coupling (characterized by a variation of the dielectric constant in an external magnetic field) reaches colossal values, approaching 500 per cent. We attribute the relaxor properties to geometric frustration, which is well known for magnetic moments but here is found to impede long-range order of the structural degrees of freedom that drive the formation of the ferroelectric state.  相似文献   

16.
With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.  相似文献   

17.
Electronic nematicity, a unidirectional self-organized state that breaks the rotational symmetry of the underlying lattice, has been observed in the iron pnictide and copper oxide high-temperature superconductors. Whether nematicity plays an equally important role in these two systems is highly controversial. In iron pnictides, the nematicity has usually been associated with the tetragonal-to-orthorhombic structural transition at temperature T(s). Although recent experiments have provided hints of nematicity, they were performed either in the low-temperature orthorhombic phase or in the tetragonal phase under uniaxial strain, both of which break the 90° rotational C(4) symmetry. Therefore, the question remains open whether the nematicity can exist above T(s) without an external driving force. Here we report magnetic torque measurements of the isovalent-doping system BaFe(2)(As(1-x)P(x))(2), showing that the nematicity develops well above T(s) and, moreover, persists to the non-magnetic superconducting regime, resulting in a phase diagram similar to the pseudogap phase diagram of the copper oxides. By combining these results with synchrotron X-ray measurements, we identify two distinct temperatures-one at T*, signifying a true nematic transition, and the other at T(s) (相似文献   

18.
给出了在垂直外磁场和任意方向外磁场中的七节点六角形超导网络相边的精确解析表达式,由此表达式求出了两种情况下的六角形网络的相边界,得到了在任意方向外磁场中的网络相边界Tc(H)是以敏感和复杂的方式依赖于磁场大小和方向,并对相边界Tc(H)这些特性的某些应用给予了讨论。  相似文献   

19.
高温超导体赝隙态具有许多反常的现象,与高温超导机理之间有密切联系,一直是研究的焦点.有理论提出在赝隙态存在预超导配对.能斯特(Nernst)效应测量探测到了超导转变温度TC0以上温区一定范围内存在磁通涡旋激发,支持了赝隙态中存在有限的超导序参量振幅和强烈的位相涨落的图象,说明TC0处的相变是由Cooper对之间长程位相关联的消失所驱动的.  相似文献   

20.
Lee SH  Broholm C  Ratcliff W  Gasparovic G  Huang Q  Kim TH  Cheong SW 《Nature》2002,418(6900):856-858
Frustrated systems are ubiquitous, and they are interesting because their behaviour is difficult to predict; frustration can lead to macroscopic degeneracies and qualitatively new states of matter. Magnetic systems offer good examples in the form of spin lattices, where all interactions between spins cannot be simultaneously satisfied. Here we report how unusual composite spin degrees of freedom can emerge from frustrated magnetic interactions in the cubic spinel ZnCr(2)O(4). Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops, whose directors -- the unique direction along which the spins are aligned, parallel or antiparallel -- govern all low-temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering; the data show that neutrons scatter from hexagonal spin clusters rather than individual spins. The hexagon directors are, to a first approximation, decoupled from each other, and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号