首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full-length cDNA clone corresponding to a putative phosphatidylinositol-specific phospholipase C(PIPLC) was isolated from Arabidopsis thaliana by screening a cDNA library and using RT-PCR strategy.The cDNA,designated AtPLC6,encodes a putative polypeptide of 578 amino acid residues with a calculated molecular mass of 66251.84 D and a pI of 7.24. The sequence analysis indicates that the polypeptide contains X, Y, EF-hand and C2 domains.The overall structure of putative AtPLC6 protein, like other plant PI-PLCs,is most similar to that of mammalian PLCδ The recombinant AtPLC6 protein expressed in E. coil was able to hydrolyze phosphatidylinositol 4,5-biophosphate (PIP2) to generate inositol 1,4,5-trisphate (IP3) and 1,2-diacylglycerol (DAG).The protein hydrolyzes PIP2 in a Ca^2 -dependent manner and the optimum concentration of Ca^2 is 10μmol/L.These results suggested that AtPLC6 gene encodes a genuine PIPLC.Northern blot analysis showed that the AtPLC6 gene is expressed at low level in all examined tissues, such as roots,stems,leaves,flowers,siliques and seedlings under normal growth conditions.The gene is strongly induced under low temperature and weakly induced under various stresses,such as ABA, high-salt stress and heat. These results suggested that AtPLC6 might be involved in the signal-transduction pathways of cold responses of the plants.  相似文献   

2.
3.
4.
Flowering in higher plants is controlled by both the internal and environmental cues. In Arabidopsis, several major genetic loci have been defined as the key switches to control flowering. The Flowering Locus C (FLC) gene has been shown in the autonomous pathway to inhibit the vegetative-to-reproductive transition. FLC appears to be repressed by Flowering Locus D (FLD), which encodes a component of the histone deacetylase complex. Here we report the identification and characterization of a new mutant allele f/d-5. Genetic analysis indicates that fld-5 (in the Wassilewskija background) is allelic to the previously characterized fld-3 and fld-4 (in the Colombia-0 background). Genetic and molecular analyses reveal that fld-5 carries a frame-shift mutation, resulting in a premature termination of the FLD open reading frame. The FLC expression is remarkably increased in fld-5, which presumably attributes to the extremely delayed flowering phenotype of the mutant.  相似文献   

5.
We investigated changes in cytosolic pH and nitric oxide (NO) during ethylene-induced stomatal closure in Arabidopsis thaliana using pharmacological, laser scanning confocal microscopy (LSCM), and spectrophotography techniques. Treatment with ethephon (a direct source of ethylene when applied to plants) and 1-aminocycloaminopropane-1-carboxylic acid (ACC, an ethylene precursor) resulted in a rapid accumulation of NO and cytosolic alkalinization in guard cells. Acetic acid (a weak acid) and sodium orthovanadate (NaVO3; a plasmalemma H+-ATPase inhibitor) reduced stomatal closure induced by ethylene and blocked ethylene-induced activity of nitrate reductase. However, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, had no effect. These results suggest that NO production is downstream of the rise in cytosolic pH in A. thaliana.  相似文献   

6.
7.
8.
In this study, Cry ⅠA(b) gene was successfully transferred into the biocontrol fungus Trichoderma harzianum with an efficiency of 60-180 transformants per 10^6 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the presence of Cry ⅠA(b) gene by Southern blot. Most transformants contained a single T-DNA copy. RT-PCR analysis showed that the Cry ⅠA(b) gene was transcribed. Antifungal activities and insecticidal activities of the transformants were examined. There was no obvious difference in antifungal activities between the transformants and their wild strains. The modified mortalities of the transformants T1 and T2 were 69.57% and 91.30%, respectively. The tranformation system mediated by A. tumefaciens proved to be a powerful tool for the filamentous fungi transformation and functional genomic study with its high transformation frequency, simplicity of T-DNA integration, and genetic stability of transformants.  相似文献   

9.
This research used confocal laser scanning microscopy to examine the initiation and connection of vessel elements in Arabidopsis thaliana (L.) Heynh seedlings. The results indicated that vessel elements differentiated first in the lower portion of cotyledon-node zone (CNZ) 2 h after germination, and then extended downwards to the hypoeotyl and root and upwardly to the middle portion of CNZ. 10 h after germination, vessel elements developed in the lower portion of cotyledon blade, the second initiating site, connecting gradually with that initiated in cotyledon node and forming pinnate-marginal venation. The connection of vessel elements occurred between the upper portions of CNZ and epieotyl-shoot zone 7 d after germination. By then, the complete connection of vessel elements in the axial and lateral organs had formed.  相似文献   

10.
The GbKTN1 gene was isolated from 10 DPA fiber cells of Gossypium barbadense using 5′RACE/3′RACE.Full-length cDNA of this gene is 2006 bp, including a 113 bp of 5′untranslated region, a 1563 bp of an open reading frame(ORF), and a 327 bp of 3′untranslated region (excluding the stop codon TAA). The ORF of GbKTN1 encodes a 521-amino acid protein with a predicted size of 55 kD. Near C-terminal of the deduced protein there is a putative ATP binding site between amino acid residues from 233 to 414. Southern blot analysis indicated that the GbKTN1 was a single copy gene in G barbadense. Combining semi-quantitative RT-PCR with Southern blot hybridization revealed that GbKTN1 expressed in all the organs detected such as roots, stems, leaves and fibers. However, the mRNA of GbKTN1 was the most abundant in fiber cells, while it was the lowest in leaves. The GbKTN1 cDNA was transformed into S. pombe to verify its function on cell elongation. Results showed that most yeast cells over expressing GbKTN1 gene were elongated dramatically with an average length increase of 2.18 times than that of the non-induced cells. Even the morphology of some yeast cells appeared irregularly. To the best of our knowledge this is the first evidence that KTN1 is correlated with cell elongation in vivo.  相似文献   

11.
12.
13.
Hybrid sterility is a major hindrance to utilizing the heterosis in indica-japonica hybrids. To isolate a gene Sc conferring the hybrid sterility, the locus was mapped using molecular markers and an F2 population derived from a cross between near isogenic lines. A primary linkage analysis showed that Sc was linked closely with 4 markers on chromosome 3, on which the genetic distance between a marker RG227 and Sc was 0.07 cM. Chromosome walking with a rice TAC genomic library was carried out using RG227 as a starting probe, and a contig of ca. 320 kb covering the Sc locus was constructed. Two TAC clones, M45EI4 and M90J01 that might cover the Sc locus, were partially sequenced. By searching the rice sequence databases with sequences of the TACs and RG227 a japonica rice BAC sequence, OSJNBb0078P24 was identified. By comparing the TAC and BAC sequences, six new PCR-based markers were developed. With these markers the Sc locus was further mapped to a region of 46 kb. The results suggest that the BAC OSJNBb0078P24 and TAC M45EI4 contain the Sc gene. Six ORFs were predicted in the focused 46-kb region.  相似文献   

14.
Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield.  相似文献   

15.
Many related papers have been published since the first report on the discovery of Nanjing hominid crania by Mu et al.[1]. Mu et al.[1], Xu et al.[2—4], the Tangshan Ar-chaeological Team[5] and Dong[6] have successively stud-ied the Nanjing Homo erectus?symbiotic faunas. Mu et al. and Xu et al. considered that the nature of the fauna in the Tangshan area belongs to the Oriental Realm,and this region was usually occupied by Ailuropoda-Tapirus fauna in the Pleistocene. However, the typica…  相似文献   

16.
In addition to its medical importance as parasitic pathogen, Entamoeba has aroused people‘s interest in its evolutionary status for a long time. Lacking mitochondrion and other intracellular organelles common to typical eukaryotes, Entamoeba and several other amitochondrial protozoans have been recognized as ancient pre-mitochondriate eukaryotes and named “archezoa“, the most primitive extant eukaryotes. It was suggested that they might be living fossils that remained in a primitive stage of evolution before acquisition of organelles, lying close to the transition between prokaryotes and eukaryotes. However, recent studies revealed that Entamoeba contained an organelle, “crypton“ or “mitosome“, which was regarded as specialized or reductive mitochondrion. Relative molecular phylogenetic analyses also indicated the existence or the probable existence of mitochondrion in Entamoeba. Our phylogenetic analysis based on DNA topoisomerase Ⅱ strongly suggested its divergence after some mitchondriate enkaryotes. Here, all these recent researches are reviewed and the evolutionary status of Entamoeba is discussed.  相似文献   

17.
The biologically active cis-cinnamic acid (cis-CA) has been perceived as a synthetic plant growth regulator for decades,However,in the present study,we found that cis-CA actually exists as a naturally occurring compound in a Brassica plant,This natural growth-regulating substance presents in both the sunlight-irradiated leaf tissue and the non-irradiated root tissue ,The concentrations of cis-CA in both tissues are comparable to the bilogi-cally effective lvels of those major plant hormones,the presence of cis-CA in root tissue suggests that it may be produced through both light-dependent and -independent path-ways or it can be transproted from a plant organ to another.  相似文献   

18.
19.
Vibrio pacini synthesizes multiple chitinases, of which three have been purified in this study by ammonium sulphate fractionation, chitin affinity chromatography and gel chromatography. Molecular weights of the three chitinases, Chi1, Chi2 and Chi3 are 27×103, 39×103 and 46×103 respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified enzymes have optimal activity at pH 7–8, and retain 50% enzymatic activity pH 4–9. The activities of chitinases are inhibited by Pb2+, Fe3+ and Cu2+, and increased by Ca2+, Mg2+ and Mn2+. Chi3 is found to inhibit the growth of six species of fungi. Such characters of chitinase are different from those of any other chitinase that were reported before. Foundation item: Supported by the Key Technologies Research and Development Programme of the Tenth Five-Year Plan of the Nation Scientific and Technological Development (2001 BA708B04-07) Biography: HAN Bao-qin (1963-), female, Professor.  相似文献   

20.
By constructing and screening the Schizosaccharomyces pombe nuclear cDNA library, a novel small nucleolar RNAs (snoRNA) was identified. The novel snoRNA displays structural features typical of C/D box snoRNA family and possesses a 10-nt-long rRNA antisense element which is predicted to guide the 2‘-O-methylation of the fission yeast 25S rRNA at G940. As expected, the rRNA ribose-methyla- tion site predicted by the novel snoRNA was precisely mapped by a deoxynucleoside triphosphate concentration-dependent primer extension assay. The comparison of functional element of guide snoRNAs among eukaryotes reveals that the novel snoRNA is a partial counterpart of the budding yeast snR60 and was termed snR60-11, snR60-Ⅱ gene nested in the intron of a non-coding RNA gene with an unknown function, which is the first example of a yeast snoRNA encoded in an intron of a non-coding RNA gene. Furthermore, a number of yeast snR60 homologues were also identified from other fungi and fly. Our results reveal that snR60 exhibits diverse genomic organization in eukaryotes, implying the high mobility of snR60 gene in the course of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号