首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
<正>交钙钛矿结构ReFeO_3系列稀土正铁氧体材料是一类在近红外波段透明的铁磁材料,近年来关于ReFeO_3的超快自旋重取向及其相干控制的研究时有报道.自旋重取向以及超快磁相变,不仅具有重要的学术价值,同时必将加速超快光磁效应在自旋电子器件中的应用.随着THz技术的不断发展,基于ReFeO_3晶体的交换相互作用的超快光学调控,对磁学的基础研究具有重要的意义.本文结合笔者最近几年的研究工作以及国内外ReFeO_3晶体的超快光磁的研究情况,介绍ReFeO_3晶体超快光磁的研究进展,并对将来该类晶体的生长和光磁研究进行了展望.  相似文献   

2.
在详细分析自旋目标窄带雷达回波特性的基础上,提出基于复数后向投影算法的自旋目标成像算法,由于该算法利用旋转散射点的相位进行匹配搜索成像,因此具有较高的分辨率以及成像效率.同时,本文分析了该算法的分辨率及其对雷达脉冲重复频率(PRF)的要求.若目标转速较高而系统PRF无法满足,则根据压缩感知理论以及自旋目标ISAR数据的稀疏性特点,建立了方位欠采样条件下的成像模型,并提出基于正交匹配追踪的自旋目标成像算法.不同条件下的仿真结果验证了算法的有效性.  相似文献   

3.
科学家已经开发了新的自旋电子设备,为开发下一代更强大的且能永久存储数据的芯片指明了道路。  相似文献   

4.
《中国科学:技术科学》2023,(12):2175-2178
<正>电催化材料的再功能化设计思考张丹彤,彭超,薛冬峰电催化材料是新能源经济发展中的关键瓶颈.拓扑材料、磁性材料和稀土材料是电催化领域的新兴材料,已经被广泛应用于氮气还原、二氧化碳还原和水分解等领域.拓扑材料具有特殊的能带结构和几何结构,表界面差异性电荷输运结构也可以衍生出拓扑绝缘体、拓扑超导体和狄拉克金属等材料.磁性材料具有特殊的电子自旋劈裂式构型,不同自旋强度对中间体平衡吸附能力产生不同影响,且在外加交变电场、热场和磁场下,催化性能表现出明显差异.稀土材料具有独特的f电子巡游特性、宽泛的原子半径和独特的f轨道构型,通常在氧还原反应中具有明显优势.这些新材料在电催化领域的再功能化有望成为下一代新兴能源材料的引领者.  相似文献   

5.
巨磁电阻效应的发现开拓了磁电子学的新学科,20世纪90年代,磁电子学得到迅速的发展,并在应用上取得显著的经济效益与巨大的社会效应,本世纪初,研究的重点已转移到半导体自旋电子学的新方向,并已取得重要的进展。本文将结合我们科研组的研究工作,概述从磁电子学到半导体自旋电子学材料的发展,重点介绍稀磁半导体材料研究的进展。  相似文献   

6.
针对窄带观测高速自旋目标的逆合成孔径雷达成像,考虑径向运动未精确补偿情况下,利用回波时频特性对自旋目标的运动参数进行高精度估计,并提出了相干单距离Doppler干涉高分辨率二维成像方法.该算法利用相干积分的方法对目标的二维时频谱密度函数进行重构得到目标的二维分布,较原来的算法在分辨率方面有较大改进,在低信噪比条件下同样适用.仿真验证了算法的有效性和参数估计的高精度.  相似文献   

7.
多铁性材料同时具有铁电、(反)铁磁、铁弹等两种或两种以上铁性有序,并且由于多种序参量之间的相互耦合作用而产生新的效应.这类功能材料在新型磁电器件、自旋电子器件、高性能信息存储与处理等领域展现出巨大的应用前景.同时,多铁性耦合的物理内涵涉及到电荷、自旋、轨道、晶格等凝聚态物理多个范畴,已成为国际上一个新的前沿研究领域.本文回顾了多铁性材料的研究历史,分别就单相多铁性和复合多铁性材料的主要研究趋势做了系统性总结,尤其就目前有待解决的关键科学问题、未来发展方向等进行了讨论和展望.  相似文献   

8.
外场调控是实现高性能多功能量子器件的有效途径。本文综述单双层石墨烯、锗烯、二硫化钼等类石墨烯材料在强自旋轨道耦合、铁磁或反铁磁场、超导近邻效应等联合竞争作用下,通过调节电场、应变场以及偏振光场等产生的新奇拓扑量子效应,包括量子自旋Hall效应、量子反常Hall效应、拓扑超导效应等,并进一步深入介绍拓扑型场效应晶体管的开发和设计。根据目前拓扑性质研究和实验进展情况判断,易规模化生产的类石墨烯材料对未来高性能低功耗量子器件走向应用而言,是非常有前景的候选材料。  相似文献   

9.
实验结果表明Ta/NiFe/FeMn/Ta多层膜的交换耦合场Hex要大于Ta/NiFe/Cu/NiFe/FeMn/Ta自旋阀多层膜中的Hex. 为了寻找其原因, 用X射线光电子能谱(XPS)研究了Ta(12 nm)/NiFe(7 nm), Ta(12 nm)/NiFe(7 nm)/Cu(4 nm)和Ta(12 nm)/NiFe(7 nm)/Cu(3 nm)/NiFe(5 nm) 3种样品, 研究结果表明前两种样品表面无任何来自下层的元素偏聚, 但在第3种样品最上层的NiFe表面上, 探测到从下层偏聚上来的Cu原子. 认为: Cu在NiFe/FeMn层间的存在是Ta/NiFe/Cu/NiFe/FeMn/Ta自旋阀多层膜的Hex低于Ta/NiFe/FeMn/Ta多层膜Hex的一个重要原因.  相似文献   

10.
利用第一性原理数值方法,研究了掺H, H+和H-面心立方Ni的电子结构. 在所用的两个团簇模型中,H作为间隙原子(或离子)分别占据八面体和四面体中心. 计算表明,前者被优先占据. H, H+和H-仅与第一近邻Ni原子形成化学键,键间由于电子转移彼此差别较小.团簇掺H+时不足的电子和掺H-时多出的电子基本上由较远的Ni原子提供和吸收. 掺杂大大减弱了其第一近邻原子间的相互作用,却只稍稍改变第一近邻、第二近邻间的相互作用. 这是H掺杂局域作用的表现,与氢脆密切相关.  相似文献   

11.
制备了基于5,6,11,12-tetraphenylnaphthacene(Rubrene)的有机发光二极管,并测量器件在不同偏压与工作温度下电致发光的磁场效应(magneto-electroluminescence,MEL).实验发现:在室温下,MEL曲线在零磁场附近几毫特斯拉范围内为W线型;而当温度降低到75 K左右,该W线型消失,MEL却呈现出一种新的精细结构,即M型的超小场效应,这种演化过程在以前的文献中未见报道.分析表明:室温下MEL的W线型是极化子对(polaron pair,PP)的超精细相互作用和外磁场引起的塞曼作用对载流子自旋共同调控的结果;低温下MEL的M线型与三重态-三重态激子湮灭(triplet-triplet annihilation,TTA)过程相关,可以用零场劈裂与塞曼作用对三重态激子对(triplet pair state,(TT)i)演化过程的共同调控来解释.该发现不仅丰富了有机半导体中的磁现象,而且加深了对有机发光器件中激发态间自旋相互作用的认识.  相似文献   

12.
高能电子探测是空间环境探测的重要组成部分. 由于高能电子穿透本领很强, 常常采用厚探测器组成的粒子望远镜作为传感部件. 由于不同能量电子将穿透不同深度, 所以几何因子随入射电子能量变化. 结合AE8模型, 以中巴资源一号卫星01和02星的粒子监测器为例, 讨论电子探头的几何因子问题. 根据计算, 低能档(0.5~1.0 MeV)与高能档(≥2.0 MeV)几何因子不同, 分别为2.468和1.736 cm2·sr. 这与传统估算的几何因子为1.18 cm2·sr有较大出入. 伴随几何因子计算, 讨论了探头的方向响应函数, 可用来协助探头设计及方向测量分析.  相似文献   

13.
运用混杂有限差分法,通过数值求解Fokker-Planck方程,模拟了200keV的种子电子注入对合声波加速辐射带电子的影响.结果发现,没有种子电子注入时,在大投掷角区域(αe〉60),辐射带电子能被合声波共振加速,使能量在1.0~2.0MeV之间的电子的相空间密度在一到两天内发生2~3个数量级的增长;有种子电子注入时,注入的种子电子能被合声波共振加速,从而促进辐射带电子相空间密度的增长,且增长的效果随投掷角的升高逐渐增强,随电子能量的升高逐渐降低,随时间的推移逐渐向更高能量方向扩展,扩展的时间尺度在1.0~2.0MeV能量范围内约为一到二天;当200keV的种子电子注入到初始的十倍且保持大约两日后,1.0和2.0MeV电子的相空间密度的最大值分别增长到同一时刻没有种子电子注入时的6倍和3倍.该结果说明种子电子注入对合声波加速辐射带电子具有重要的影响.  相似文献   

14.
从Boltzmann方程出发,根据带电粒子在中性大气中的传输理论,综合考虑弹性散射、激发、离化以及二次电子生成等重要物理过程,用数值方法求解沉降电子传输方程,获得随高度、能量和投掷角变化的微分沉降电子数通量.在单成分(N2)大气近似条件下,模式计算结果较好地描述了沉降电子通量谱在极区高层大气中的传输规律和特性;由沉降电子微分通量计算得到的中性成分电离率主要特征与已有经验模式较好地吻合.将FAST卫星飞越EISCAT雷达上空时观测到的沉降电子能谱作为模式输入,计算获得了与由雷达观测数据反演得到的中性大气电离率相一致的结果.  相似文献   

15.
随微细加工技术的发展,单电子晶体管的研究越来越受到重视。本文介绍了单电子晶体管的工作原理、几种类型的单电子晶体管和它们的集成研究,着重讨论了新型单电子晶体管在超敏感探测、微电子、光电子和量子信息领域中的应用。  相似文献   

16.
采用数值算法自洽求解Poisson和Schrödinger方程, 计算了AlGaN势垒层的应变弛豫度对高Al含量AlGaN/GaN高电子迁移率晶体管(HEMT)中的导带结构、电子浓度以及二维电子气(2DEG)薄层电荷密度的影响. 利用所获得的精确薄层电荷密度与栅电压的关系, 采用非线性电荷控制模型解析求解了应变弛豫度对AlxGa1-xN/GaN HEMT直流输出特性的影响. 计算表明, 应变弛豫度为0时所获得的Al0.50Ga0.500N/GaN HEMT的最大二维电子气薄层电荷密度为2.42×1013 cm-2, 最大漏电流为2482.8 mA/mm; 应变弛豫度为1时所获得的最大二维电子气薄层电荷密度为1.49×1013 cm-2, 最大漏电流为1149.7 mA/mm. 模拟结果同已有的测试数据相比, 符合较好. 对模拟结果的分析表明, 对高Al含量的AlGaN/GaN HEMT进行理论研究时需要考虑应变弛豫度的影响, 减小AlGaN势垒层的应变弛豫度可显著提高器件的性能.  相似文献   

17.
朗道于1937年将物质的相变和对称性相关联,并提出了物质中的序参量的概念.随着功能材料的研发进展、"量子材料"概念的诞生,与点阵密切关联的电、磁、光等性能均可以在人为调控手段下发生变化,唤起了人们对"序参量"称呼的眷爱.当体系中同时存在多种序参量且多种序参量之间存在强烈的关联作用时,往往会催生许多新奇的物理现象.对一体系在原子尺度上的多种序参量(如点阵、电荷、自旋、轨道、拓扑)的协同测量和关联特性的研究将会有力地促进人们对新型功能材料中各种耦合作用的理解,促进这类材料的研发和应用.本文将简单介绍原子尺度序参量概念的由来,并主要以本研究组的一些工作为例,阐述如何应用和发展先进电子显微学和相关技术实现原子尺度的多种序参量协同测量和关联特性的研究.  相似文献   

18.
热电子发射指加热金属使其中更多的电子克服表面势垒而逸出的现象,易见逸出的电子和丢失电子的金属会存在电势.基于这一原理,本文提出了金属-势垒-金属的热电子发电模型,采用量子理论将金属中电子运动近似为索末非自由电子气模型.针对势垒宽度的不同,提出了两种近似模型.第一种模型假设金属间势垒宽度足够大,电子运动以越过势垒为主;第二种模型假设金属间势垒宽度足够小,电子运动以隧道效应遂穿势垒为主.对第一种模型进行了详细的理论分析和推导,包括模型建立,开路电压计算,绘制伏安特性曲线等.对第二种模型进行了简略的理论分析.最后,本文在理论上指出了热电子发电的可行性,可以为金属热电子发电实物研制中材料的选择,温度的设置提供指导.  相似文献   

19.
针对当前柔性电子、电子皮肤、可穿戴电子、软体机器人等领域使用的衬底面临挑战性的难题:难以同时满足一侧具有很好的柔性而另一侧具有较高刚度(变刚度功能梯度特性),以及散热性能和材料生物兼容性差的问题,本文提出一种PDMS/SiC功能梯度衬底,以PDMS为基体材料, SiC为增强相(填料);并且SiC含量在PDMS基体中从一侧到另一侧逐渐增大,呈现连续功能梯度和变刚度特性.为了解决现有技术难以制造PDMS/SiC功能梯度衬底的问题,提出一种基于多材料主动混合3D打印制造新方法,它能实现PDMS/SiC功能梯度衬底高效低成本制造.通过实验揭示了打印速度、背压、打印平台加热温度等主要工艺参数对打印衬底质量和性能的影响及其规律.利用提出的制备方法并结合优化的工艺参数,制造出高性能的PDMS/SiC功能梯度衬底.与传统的PDMS衬底相比,新型衬底其热导率提高了2.5倍; SiC含量50%一侧的杨氏模量增加了2.9倍,电学性能稳定;而且新型衬底刚度的空间变化呈现连续梯度特性.实验结果显示, PDMS/SiC功能梯度同时具有较好的柔性和较高刚度,而且还具有优良的散热性能,良好的绝缘性和生物兼容性,变刚度功能梯度特性,为柔性电子、电子皮肤、可穿戴电子、软体机器人等领域亟需的新一代高性能衬底提供了一种新的解决方案.  相似文献   

20.
氧化锆陶瓷由于性能优异, 已得到了广泛的应用. 氧化锆陶瓷的相变影响其性能, 为控制相变进而控制性能, 相变机理的研究至关重要. 用固体与分子经验电子理论计算了c-ZrO2、t-ZrO2和m-ZrO2的价电子结构, 得到形成它们强键骨架的共价键上的总共价电子对数分别为3.19184、3.45528和3.79625. 按固相合金中的C-Me偏聚理论的思想推测ZrO2从高温到低温的相变顺序应为液相→c相→t相→m相. 从价电子结构进行的推断与实验结果完全一致, 说明合金相变的电子理论可以扩展到陶瓷材料中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号