首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
Pan F  Sun L  Kardian DB  Whartenby KA  Pardoll DM  Liu JO 《Nature》2007,445(7126):433-436
Feedback regulation of adaptive immunity is a fundamental mechanism for controlling the overall output of different signal transduction pathways, including that mediated by the T-cell antigen receptor (TCR). Calcineurin and Ras are known to have essential functions during T-cell activation. However, how the calcineurin signalling pathway is terminated in the process is still largely unknown. Although several endogenous inhibitors of calcineurin have been reported, none fulfils the criteria of a feedback inhibitor, as their expression is not responsive to TCR signalling. Here we identify an endogenous inhibitor of calcineurin, named Carabin, which also inhibits the Ras signalling pathway through its intrinsic Ras GTPase-activating protein (GAP) activity. Expression of Carabin is upregulated on TCR signalling in a manner that is sensitive to inhibitors of calcineurin, indicating that Carabin constitutes part of a negative regulatory loop for the intracellular TCR signalling pathway. Knockdown of Carabin by short interfering RNA led to a significant enhancement of interleukin-2 production by antigen-specific T cells in vitro and in vivo. Thus, Carabin is a negative feedback inhibitor of the calcineurin signalling pathway that also mediates crosstalk between calcineurin and Ras.  相似文献   

2.
Glutamate racemase is an enzyme essential to the bacterial cell wall biosynthesis pathway, and has therefore been considered as a target for antibacterial drug discovery. We characterized the glutamate racemases of several pathogenic bacteria using structural and biochemical approaches. Here we describe three distinct mechanisms of regulation for the family of glutamate racemases: allosteric activation by metabolic precursors, kinetic regulation through substrate inhibition, and D-glutamate recycling using a d-amino acid transaminase. In a search for selective inhibitors, we identified a series of uncompetitive inhibitors specifically targeting Helicobacter pylori glutamate racemase that bind to a cryptic allosteric site, and used these inhibitors to probe the mechanistic and dynamic features of the enzyme. These structural, kinetic and mutational studies provide insight into the physiological regulation of these essential enzymes and provide a basis for designing narrow-spectrum antimicrobial agents.  相似文献   

3.
Role of arginine-tRNA in protein degradation by the ubiquitin pathway   总被引:4,自引:0,他引:4  
S Ferber  A Ciechanover 《Nature》1987,326(6115):808-811
Degradation of intracellular proteins through the ubiquitin and ATP-dependent proteolysis pathway involves several steps. Initially, ubiquitin is covalently linked to the proteolytic substrate in an ATP-requiring reaction. Proteins marked by ubiquitin may then be selectively lysed in a reaction that also requires ATP (for reviews see refs 1-3). A major question concerns the structural features of a protein that make it a specific substrate for ubiquitin-mediated degradation. It was shown that a free alpha-NH2 group is one important feature of the protein structure recognized by the ubiquitin ligation system, and that the half-life in vivo of a protein with an exposed amino terminus depends on its amino terminal residue. We have previously demonstrated that transfer RNA (tRNA) is essential for conjugation of ubiquitin and for the subsequent degradation of proteins with acidic amino termini (aspartate or glutamate). We now show that tRNA is required for post-translational conjugation of arginine to acidic amino termini of proteins, a modification that is essential for their degradation by the ubiquitin pathway.  相似文献   

4.
Jankowsky E  Gross CH  Shuman S  Pyle AM 《Nature》2000,403(6768):447-451
All aspects of cellular RNA metabolism and processing involve DExH/D proteins, which are a family of enzymes that unwind or manipulate RNA in an ATP-dependent fashion. DExH/D proteins are also essential for the replication of many viruses, and therefore provide targets for the development of therapeutics. All DExH/D proteins characterized to date hydrolyse nucleoside triphosphates and, in most cases, this activity is stimulated by the addition of RNA or DNA. Several members of the family unwind RNA duplexes in an NTP-dependent fashion in vitro; therefore it has been proposed that DExH/D proteins couple NTP hydrolysis to RNA conformational change in complex macromolecular assemblies. Despite the central role of DExH/D proteins, their mechanism of RNA helicase activity remains unknown. Here we show that the DExH protein NPH-II unwinds RNA duplexes in a processive, unidirectional fashion with a step size of roughly one-half helix turn. We show that there is a quantitative connection between ATP utilization and helicase processivity, thereby providing direct evidence that DExH/D proteins can function as molecular motors on RNA.  相似文献   

5.
Thoma R  Schulz-Gasch T  D'Arcy B  Benz J  Aebi J  Dehmlow H  Hennig M  Stihle M  Ruf A 《Nature》2004,432(7013):118-122
In higher organisms the formation of the steroid scaffold is catalysed exclusively by the membrane-bound oxidosqualene cyclase (OSC; lanosterol synthase). In a highly selective cyclization reaction OSC forms lanosterol with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. Valuable data on the mechanism of the complex cyclization cascade have been collected during the past 50 years using suicide inhibitors, mutagenesis studies and homology modelling. Nevertheless it is still not fully understood how the enzyme catalyses the reaction. Because of the decisive role of OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. Here we present two crystal structures of the human membrane protein OSC: the target protein with an inhibitor that showed cholesterol lowering in vivo opens the way for the structure-based design of new OSC inhibitors. The complex with the reaction product lanosterol gives a clear picture of the way in which the enzyme achieves product specificity in this highly exothermic cyclization reaction.  相似文献   

6.
Taylor AF  Smith GR 《Nature》2003,423(6942):889-893
Helicases are molecular motors that move along and unwind double-stranded nucleic acids. RecBCD enzyme is a complex helicase and nuclease, essential for the major pathway of homologous recombination and DNA repair in Escherichia coli. It has sets of helicase motifs in both RecB and RecD, two of its three subunits. This rapid, highly processive enzyme unwinds DNA in an unusual manner: the 5'-ended strand forms a long single-stranded tail, whereas the 3'-ended strand forms an ever-growing single-stranded loop and short single-stranded tail. Here we show by electron microscopy of individual molecules that RecD is a fast helicase acting on the 5'-ended strand and RecB is a slow helicase acting on the 3'-ended strand on which the single-stranded loop accumulates. Mutational inactivation of the helicase domain in RecB or in RecD, or removal of the RecD subunit, altered the rates of unwinding or the types of structure produced, or both. This dual-helicase mechanism explains how the looped recombination intermediates are generated and may serve as a general model for highly processive travelling machines with two active motors, such as other helicases and kinesins.  相似文献   

7.
半胱氨酸蛋白酶是人体自身产生的重要酶类物质,它广泛的参与人体新陈代谢和蛋白的水解。但过量产生的半胱氨酸蛋白酶会导致骨质疏松和乳腺癌。腈基类化合物分子是一种新发现的具有抑制半胱氨酸蛋白酶作用的靶向药物分子,高效且低副作用。但是它的抑制机理一直没有得到解决。本文介绍借助量子力学/分子力学(Q M/M M)的计算研究,解得了此类化合物对于半胱氨酸蛋白酶的抑制机理,并借助分子学软件设计了一种新型药物分子,有助进一步药物研究。  相似文献   

8.
Breidenbach MA  Brunger AT 《Nature》2004,432(7019):925-929
Clostridal neurotoxins (CNTs) are the causative agents of the neuroparalytic diseases botulism and tetanus. CNTs impair neuronal exocytosis through specific proteolysis of essential proteins called SNAREs. SNARE assembly into a low-energy ternary complex is believed to catalyse membrane fusion, precipitating neurotransmitter release; this process is attenuated in response to SNARE proteolysis. Site-specific SNARE hydrolysis is catalysed by the CNT light chains, a unique group of zinc-dependent endopeptidases. The means by which a CNT properly identifies and cleaves its target SNARE has been a subject of much speculation; it is thought to use one or more regions of enzyme-substrate interaction remote from the active site (exosites). Here we report the first structure of a CNT endopeptidase in complex with its target SNARE at a resolution of 2.1 A: botulinum neurotoxin serotype A (BoNT/A) protease bound to human SNAP-25. The structure, together with enzyme kinetic data, reveals an array of exosites that determine substrate specificity. Substrate orientation is similar to that of the general zinc-dependent metalloprotease thermolysin. We observe significant structural changes near the toxin's catalytic pocket upon substrate binding, probably serving to render the protease competent for catalysis. The novel structures of the substrate-recognition exosites could be used for designing inhibitors specific to BoNT/A.  相似文献   

9.
琥珀酸半醛还原酶的抑制剂可作为缓解琥珀酸半醛脱氢酶缺陷病症状的潜在药物.酶抑制剂的研发要以酶的动力学性质为基础,但琥珀酸半醛还原酶的稳态动力学性质还不清楚.本文通过对琥珀酸半醛还原酶AKR7A5稳态动力学性质的分析,判断AKR7A5是按照有序的三元复合物反应机理催化反应;在此基础上,推导出琥珀酸半醛发生底物抑制是由于错误地与AKR7A5:NADP+二元复合物结合;底物的结构类似物琥珀酸体现出反竞争抑制剂的特点,只能与AKR7A5:NADP+二元复合物相互作用,暗示只有通过抑制剂、酶、NADP+复合物的方向入手,才能获得反竞争抑制剂与AKR7A5的复合物晶体结构.  相似文献   

10.
Li W  Tu D  Brunger AT  Ye Y 《Nature》2007,446(7133):333-337
In eukaryotic cells, many short-lived proteins are conjugated with Lys 48-linked ubiquitin chains and degraded by the proteasome. Ubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3). Most ubiquitin ligases use either a HECT (homologous to E6-associated protein C terminus) or a RING (really interesting new gene) domain to catalyse polyubiquitination, but the mechanism of E3 catalysis is poorly defined. Here we dissect this process using mouse Ube2g2 (E2; identical at the amino acid level to human Ube2g2) and human gp78 (E3), an endoplasmic reticulum (ER)-associated conjugating system essential for the degradation of misfolded ER proteins. We demonstrate by expressing recombinant proteins in Escherichia coli that Ube2g2/gp78-mediated polyubiquitination involves preassembly of Lys 48-linked ubiquitin chains at the catalytic cysteine of Ube2g2. The growth of Ube2g2-anchored ubiquitin chains seems to be mediated by an aminolysis-based transfer reaction between two Ube2g2 molecules that each carries a ubiquitin moiety in its active site. Intriguingly, polyubiquitination of a substrate can be achieved by transferring preassembled ubiquitin chains from Ube2g2 to a lysine residue in a substrate.  相似文献   

11.
Bieling P  Laan L  Schek H  Munteanu EL  Sandblad L  Dogterom M  Brunner D  Surrey T 《Nature》2007,450(7172):1100-1105
The microtubule cytoskeleton is essential to cell morphogenesis. Growing microtubule plus ends have emerged as dynamic regulatory sites in which specialized proteins, called plus-end-binding proteins (+TIPs), bind and regulate the proper functioning of microtubules. However, the molecular mechanism of plus-end association by +TIPs and their ability to track the growing end are not well understood. Here we report the in vitro reconstitution of a minimal plus-end tracking system consisting of the three fission yeast proteins Mal3, Tip1 and the kinesin Tea2. Using time-lapse total internal reflection fluorescence microscopy, we show that the EB1 homologue Mal3 has an enhanced affinity for growing microtubule end structures as opposed to the microtubule lattice. This allows it to track growing microtubule ends autonomously by an end recognition mechanism. In addition, Mal3 acts as a factor that mediates loading of the processive motor Tea2 and its cargo, the Clip170 homologue Tip1, onto the microtubule lattice. The interaction of all three proteins is required for the selective tracking of growing microtubule plus ends by both Tea2 and Tip1. Our results dissect the collective interactions of the constituents of this plus-end tracking system and show how these interactions lead to the emergence of its dynamic behaviour. We expect that such in vitro reconstitutions will also be essential for the mechanistic dissection of other plus-end tracking systems.  相似文献   

12.
D L Ollis  P Brick  R Hamlin  N G Xuong  T A Steitz 《Nature》1985,313(6005):762-766
The 3.3-A resolution crystal structure of the large proteolytic fragment of Escherichia coli DNA polymerase I complexed with deoxythymidine monophosphate consists of two domains, the smaller of which binds zinc-deoxythymidine monophosphate. The most striking feature of the larger domain is a deep crevice of the appropriate size and shape for binding double-stranded B-DNA. A flexible subdomain may allow the enzyme to surround completely the DNA substrate, thereby allowing processive nucleotide polymerization without enzyme dissociation.  相似文献   

13.
RNA degradation is a determining factor in the control of gene expression. The maturation, turnover and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a major exoribonuclease that intervenes in all of these fundamental processes; it can act independently or as a component of the exosome, an essential RNA-degrading multiprotein complex. RNase II-like enzymes are found in all three kingdoms of life, but there are no structural data for any of the proteins of this family. Here we report the X-ray crystallographic structures of both the ligand-free (at 2.44 A resolution) and RNA-bound (at 2.74 A resolution) forms of Escherichia coli RNase II. In contrast to sequence predictions, the structures show that RNase II is organized into four domains: two cold-shock domains, one RNB catalytic domain, which has an unprecedented alphabeta-fold, and one S1 domain. The enzyme establishes contacts with RNA in two distinct regions, the 'anchor' and the 'catalytic' regions, which act synergistically to provide catalysis. The active site is buried within the RNB catalytic domain, in a pocket formed by four conserved sequence motifs. The structure shows that the catalytic pocket is only accessible to single-stranded RNA, and explains the specificity for RNA versus DNA cleavage. It also explains the dynamic mechanism of RNA degradation by providing the structural basis for RNA translocation and enzyme processivity. We propose a reaction mechanism for exonucleolytic RNA degradation involving key conserved residues. Our three-dimensional model corroborates all existing biochemical data for RNase II, and elucidates the general basis for RNA degradation. Moreover, it reveals important structural features that can be extrapolated to other members of this family.  相似文献   

14.
15.
Fushinobu S  Nishimasu H  Hattori D  Song HJ  Wakagi T 《Nature》2011,478(7370):538-541
Enzymes catalyse specific reactions and are essential for maintaining life. Although some are referred to as being bifunctional, they consist of either two distinct catalytic domains or a single domain that displays promiscuous substrate specificity. Thus, one enzyme active site is generally responsible for one biochemical reaction. In contrast to this conventional concept, archaeal fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) consists of a single catalytic domain, but catalyses two chemically distinct reactions of gluconeogenesis: (1) the reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GA3P) to FBP; (2) the dephosphorylation of FBP to fructose-6-phosphate (F6P). Thus, FBPA/P is fundamentally different from ordinary enzymes whose active sites are responsible for a specific reaction. However, the molecular mechanism by which FBPA/P achieves its unusual bifunctionality remains unknown. Here we report the crystal structure of FBPA/P at 1.5-? resolution in the aldolase form, where a critical lysine residue forms a Schiff base with DHAP. A structural comparison of the aldolase form with a previously determined phosphatase form revealed a dramatic conformational change in the active site, demonstrating that FBPA/P metamorphoses its active-site architecture to exhibit dual activities. Thus, our findings expand the conventional concept that one enzyme catalyses one biochemical reaction.  相似文献   

16.
Bianco PR  Kowalczykowski SC 《Nature》2000,405(6784):368-372
DNA helicases are ubiquitous enzymes that unwind double-stranded DNA. They are a diverse group of proteins that move in a linear fashion along a one-dimensional polymer lattice--DNA--by using a mechanism that couples nucleoside triphosphate hydrolysis to both translocation and double-stranded DNA unwinding to produce separate strands of DNA. The RecBC enzyme is a processive DNA helicase that functions in homologous recombination in Escherichia coli; it unwinds up to 6,250 base pairs per binding event and hydrolyses slightly more than one ATP molecule per base pair unwound. Here we show, by using a series of gapped oligonucleotide substrates, that this enzyme translocates along only one strand of duplex DNA in the 3'-->5' direction. The translocating enzyme will traverse, or 'step' across, single-stranded DNA gaps in defined steps that are 23 (+/-2) nucleotides in length. This step is much larger than the amount of double-stranded DNA that can be unwound using the free energy derived from hydrolysis of one molecule of ATP, implying that translocation and DNA unwinding are separate events. We propose that the RecBC enzyme both translocates and unwinds by a quantized, two-step, inchworm-like mechanism that may have parallels for translocation by other linear motor proteins.  相似文献   

17.
D H Teng  C M Engele  T R Venkatesh 《Nature》1991,353(6343):437-440
The X-linked prune (pn) eye-colour mutation of Drosophila melanogaster has a highly specific, complementary lethal interaction with the conditional dominant Killer of prune (awdK-pn) mutation. Although awdK-pn flies have no apparent phenotype on their own, pn awdK-pn double mutants die as second or third larval instars. The awd locus encodes a nucleoside diphosphate kinase, an enzyme that catalyses the transfer of high-energy phosphate bonds between nucleoside diphosphates and nucleoside triphosphates, which is essential for the normal development of Drosophila. Analysis of the pn locus has suggested that the complementary DNA, TcD37, encodes a putative pn+ product. Here we report the nucleotide sequence of TcD37 and the similarity of its deduced protein product to the catalytic domain of mammalian GTPase-activating proteins (GAPs); GAPs stimulate the GTPase activity of Ras (ref. 6), which are plasma membrane-bound proteins involved in the regulation of cell proliferation and differentiation. These results suggest that the Drosophila TcD37 protein participates in a biochemical pathway similar to that of Ras and GAPs in mammals and yeast. We propose that the interaction between pn and awd is due to a neomorphic mutation that enhances the ability of AwdK-pn nucleoside diphosphate kinase to induce a regulatory GTPase into a GTP-bound 'on' state, whereas Pn modulates the activity of this GTPase either by switching it to a GDP-bound 'off' state or by interfering with its effector function.  相似文献   

18.
EPS8 and E3B1 transduce signals from Ras to Rac.   总被引:27,自引:0,他引:27  
The small guanine nucleotide (GTP)-binding protein Rac regulates mitogen-induced cytoskeletal changes and c-Jun amino-terminal kinase (JNK), and its activity is required for Ras-mediated cell transformation. Epistatic analysis placed Rac as a key downstream target in Ras signalling; however, the biochemical mechanism regulating the cross-talk among these small GTP-binding proteins remains to be elucidated. Eps8 (relative molecular mass 97,000) is a substrate of receptors with tyrosine kinase activity which binds, through its SH3 domain, to a protein designated E3b1/Abi-1. Here we show that Eps8 and E3b1/Abi-1 participate in the transduction of signals from Ras to Rac, by regulating Rac-specific guanine nucleotide exchange factor (GEF) activities. We also show that Eps8, E3b1 and Sos-1 form a tri-complex in vivo that exhibits Rac-specific GEF activity in vitro. We propose a model in which Eps8 mediates the transfer of signals between Ras and Rac, by forming a complex with E3b1 and Sos-1.  相似文献   

19.
Lim KH  Ancrile BB  Kashatus DF  Counter CM 《Nature》2008,452(7187):646-649
Tumour cells become addicted to the expression of initiating oncogenes like Ras, such that loss of oncogene expression in established tumours leads to tumour regression. HRas, NRas or KRas are mutated to remain in the active GTP-bound oncogenic state in many cancers. Although Ras activates several proteins to initiate human tumour growth, only PI3K, through activation of protein kinase B (PKB; also known as AKT), must remain activated by oncogenic Ras to maintain this growth. Here we show that blocking phosphorylation of the AKT substrate, endothelial nitric oxide synthase (eNOS or NOS3), inhibits tumour initiation and maintenance. Moreover, eNOS enhances the nitrosylation and activation of endogenous wild-type Ras proteins, which are required throughout tumorigenesis. We suggest that activation of the PI3K-AKT-eNOS-(wild-type) Ras pathway by oncogenic Ras in cancer cells is required to initiate and maintain tumour growth.  相似文献   

20.
Thordarson P  Bijsterveld EJ  Rowan AE  Nolte RJ 《Nature》2003,424(6951):915-918
Nature has evolved complex enzyme architectures that facilitate the synthesis and manipulation of the biopolymers DNA and RNA, including enzymes capable of attaching to the biopolymer substrate and performing several rounds of catalysis before dissociating. Many of these 'processive' enzymes have a toroidal shape and completely enclose the biopolymer while moving along its chain, as exemplified by the DNA enzymes T4 DNA polymerase holoenzyme and lambda-exonucleoase. The overall architecture of these systems resembles that of rotaxanes, in which a long molecule or polymer is threaded through a macrocycle. Here we describe a rotaxane that mimics the ability of processive enzymes to catalyse multiple rounds of reaction while the polymer substrate stays bound. The catalyst consists of a substrate binding cavity incorporating a manganese(III) porphyrin complex that oxidizes alkenes within the toroid cavity, provided a ligand has been attached to the outer face of the toroid to both activate the porphyrin complex and shield it from being able to oxidize alkenes outside the cavity. We find that when threaded onto a polybutadiene polymer strand, this catalyst epoxidizes the double bonds of the polymer, thereby acting as a simple analogue of the enzyme systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号