首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Integrity of the blood vessel wall is essential for vascular homeostasis and organ function. A dynamic balance between endothelial cell survival and apoptosis contributes to this integrity during vascular development and pathological angiogenesis. The genetic and molecular mechanisms regulating these processes in vivo are still largely unknown. Here, we show that Birc2 (also known as cIap1) is essential for maintaining endothelial cell survival and blood vessel homeostasis during vascular development. Using a forward-genetic approach, we identified a zebrafish null mutant for birc2, which shows severe hemorrhage and vascular regression due to endothelial cell integrity defects and apoptosis. Using genetic and molecular approaches, we show that Birc2 positively regulates the formation of the TNF receptor complex I in endothelial cells, thereby promoting NF-kappaB activation and maintaining vessel integrity and stabilization. In the absence of Birc2, a caspase-8-dependent apoptotic program takes place that leads to vessel regression. Our findings identify Birc2 and TNF signaling components as critical regulators of vascular integrity and endothelial cell survival, thereby providing an additional target pathway for the control of angiogenesis and blood vessel homeostasis during embryogenesis, regeneration and tumorigenesis.  相似文献   

2.
3.
Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of gamma-aminobutyric acid type A (GABA(A)) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors. Our data implicate Trak1 as a crucial regulator of GABA(A) receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases.  相似文献   

4.
5.
Mutations affecting ciliary components cause ciliopathies. As described here, we investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel and Joubert syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2 and Cc2d2a. Components of this complex co-localize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes Joubert syndrome. Thus, a transition zone complex of Meckel and Joubert syndrome proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.  相似文献   

6.
Familial idiopathic basal ganglia calcification (IBGC) is a genetic condition with a wide spectrum of neuropsychiatric symptoms, including parkinsonism and dementia. Here, we identified mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), in IBGC-affected families of varied ancestry, and we observed significantly impaired phosphate transport activity for all assayed PiT2 mutants in Xenopus laevis oocytes. Our results implicate altered phosphate homeostasis in the etiology of IBGC.  相似文献   

7.
Current models describe male-specific fruitless (fruM) as a genetic 'switch' regulating sexual behavior in Drosophila melanogaster, and they postulate that female (F) and male (M) doublesex (dsx) products control body sexual morphology. In contradiction to this simple model, we show that dsx, as well as fruM and non-sex-specific retained (retn), affect both male and female sexual behaviors. In females, both retn and dsxF contribute to female receptivity, and both genes act to repress male-like courtship activity in the presence or absence of fruM. In males, consistent with the opposing functions of dsxM and dsxF, dsxM acts as a positive factor for male courtship. retn also acts counter to fruM in the development of the male-specific muscle of Lawrence. Molecularly, retn seems to regulate sexual behavior via a previously described complex that represses zerknullt. Thus, we show that fru and dsx together act as a 'switch' system regulating behavior in the context of other developmental genes, such as retn.  相似文献   

8.
Plant oil is an important renewable resource for biodiesel production and for dietary consumption by humans and livestock. Through genetic mapping of the oil trait in plants, studies have reported multiple quantitative trait loci (QTLs) with small effects, but the molecular basis of oil QTLs remains largely unknown. Here we show that a high-oil QTL (qHO6) affecting maize seed oil and oleic-acid contents encodes an acyl-CoA:diacylglycerol acyltransferase (DGAT1-2), which catalyzes the final step of oil synthesis. We further show that a phenylalanine insertion in DGAT1-2 at position 469 (F469) is responsible for the increased oil and oleic-acid contents. The DGAT1-2 allele with F469 is ancestral, whereas the allele without F469 is a more recent mutant selected by domestication or breeding. Ectopic expression of the high-oil DGAT1-2 allele increases oil and oleic-acid contents by up to 41% and 107%, respectively. This work provides insights into the molecular basis of natural variation of oil and oleic-acid contents in plants and highlights DGAT as a promising target for increasing oil and oleic-acid contents in other crops.  相似文献   

9.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by activation of the type I interferon (IFN) pathway. Here we convincingly replicate association of the IFN regulatory factor 5 (IRF5) rs2004640 T allele with SLE in four independent case-control cohorts (P = 4.4 x 10(-16)) and by family-based transmission disequilibrium test analysis (P = 0.0006). The rs2004640 T allele creates a 5' donor splice site in an alternate exon 1 of IRF5, allowing expression of several unique IRF5 isoforms. We also identify an independent cis-acting variant associated with elevated expression of IRF5 and linked to the exon 1B splice site. Haplotypes carrying the variant associated with elevated expression and lacking the exon 1B donor site do not confer risk of SLE. Thus, a common IRF5 haplotype driving elevated expression of multiple unique isoforms of IRF5 is an important genetic risk factor for SLE, establishing a causal role for type I IFN pathway genes in human autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号