首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a map of 1.42 million single nucleotide polymorphisms (SNPs) distributed throughout the human genome, providing an average density on available sequence of one SNP every 1.9 kilobases. These SNPs were primarily discovered by two projects: The SNP Consortium and the analysis of clone overlaps by the International Human Genome Sequencing Consortium. The map integrates all publicly available SNPs with described genes and other genomic features. We estimate that 60,000 SNPs fall within exon (coding and untranslated regions), and 85% of exons are within 5 kb of the nearest SNP. Nucleotide diversity varies greatly across the genome, in a manner broadly consistent with a standard population genetic model of human history. This high-density SNP map provides a public resource for defining haplotype variation across the genome, and should help to identify biomedically important genes for diagnosis and therapy.  相似文献   

2.
Most genomic variation is attributable to single nucleotide polymorphisms (SNPs), which therefore offer the highest resolution for tracking disease genes and population history. It has been proposed that a dense map of 30,000-500,000 SNPs can be used to scan the human genome for haplotypes associated with common diseases. Here we describe a simple but powerful method, called reduced representation shotgun (RRS) sequencing, for creating SNP maps. RRS re-samples specific subsets of the genome from several individuals, and compares the resulting sequences using a highly accurate SNP detection algorithm. The method can be extended by alignment to available genome sequence, increasing the yield of SNPs and providing map positions. These methods are being used by The SNP Consortium, an international collaboration of academic centres, pharmaceutical companies and a private foundation, to discover and release at least 300,000 human SNPs. We have discovered 47,172 human SNPs by RRS, and in total the Consortium has identified 148,459 SNPs. More broadly, RRS facilitates the rapid, inexpensive construction of SNP maps in biomedically and agriculturally important species. SNPs discovered by RRS also offer unique advantages for large-scale genotyping.  相似文献   

3.
Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.  相似文献   

4.
A first-generation linkage disequilibrium map of human chromosome 22   总被引:58,自引:0,他引:58  
DNA sequence variants in specific genes or regions of the human genome are responsible for a variety of phenotypes such as disease risk or variable drug response. These variants can be investigated directly, or through their non-random associations with neighbouring markers (called linkage disequilibrium (LD)). Here we report measurement of LD along the complete sequence of human chromosome 22. Duplicate genotyping and analysis of 1,504 markers in Centre d'Etude du Polymorphisme Humain (CEPH) reference families at a median spacing of 15 kilobases (kb) reveals a highly variable pattern of LD along the chromosome, in which extensive regions of nearly complete LD up to 804 kb in length are interspersed with regions of little or no detectable LD. The LD patterns are replicated in a panel of unrelated UK Caucasians. There is a strong correlation between high LD and low recombination frequency in the extant genetic map, suggesting that historical and contemporary recombination rates are similar. This study demonstrates the feasibility of developing genome-wide maps of LD.  相似文献   

5.
Recent advances have shown that the majorityof the nucleotide variation in human genome is single nucleo-tide polymorphisms (SNPs). Using SNPs each chromosomecan be divided into different haplotype blocks, and there arelimited common haplotypes in each block. This provides apowerful approach for whole genome scan for disease-asso-ciated genes/variants. However, most data available todayare based on the large-scale genomic analyses, data concern-ing individual genes for fine mapping with high density SNPsare relatively lacking. We have sequenced 7 genes and theirflanking regions, identified 34 novel SNPs, constructed highdensity SNP haplotypes and haplotype blocks in 5 genes inthe centromeric region of chromosome 15 in I00 ChineseHart subjects. Our results show that there is a great hetero-geneity in the haplotypes and haplotype block structureswithin and between these genes, which are in close physicalproximity. Data obtained in this study provide a useful toolfor candidate gene approach at the fine scale for identifyingdisease contributing variants in the genes/regions.  相似文献   

6.
Wong GK  Liu B  Wang J  Zhang Y  Yang X  Zhang Z  Meng Q  Zhou J  Li D  Zhang J  Ni P  Li S  Ran L  Li H  Zhang J  Li R  Li S  Zheng H  Lin W  Li G  Wang X  Zhao W  Li J  Ye C  Dai M  Ruan J  Zhou Y  Li Y  He X  Zhang Y  Wang J  Huang X  Tong W  Chen J  Ye J  Chen C  Wei N  Li G  Dong L  Lan F  Sun Y  Zhang Z  Yang Z  Yu Y  Huang Y  He D  Xi Y  Wei D  Qi Q  Li W  Shi J  Wang M  Xie F  Wang J  Zhang X  Wang P  Zhao Y  Li N  Yang N  Dong W  Hu S  Zeng C  Zheng W  Hao B  Hillier LW  Yang SP  Warren WC  Wilson RK  Brandström M  Ellegren H  Crooijmans RP 《Nature》2004,432(7018):717-722
We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms (SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds (a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines--in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases.  相似文献   

7.
The mosaic structure of variation in the laboratory mouse genome   总被引:56,自引:0,他引:56  
Most inbred laboratory mouse strains are known to have originated from a mixed but limited founder population in a few laboratories. However, the effect of this breeding history on patterns of genetic variation among these strains and the implications for their use are not well understood. Here we present an analysis of the fine structure of variation in the mouse genome, using single nucleotide polymorphisms (SNPs). When the recently assembled genome sequence from the C57BL/6J strain is aligned with sample sequence from other strains, we observe long segments of either extremely high (approximately 40 SNPs per 10 kb) or extremely low (approximately 0.5 SNPs per 10 kb) polymorphism rates. In all strain-to-strain comparisons examined, only one-third of the genome falls into long regions (averaging >1 Mb) of a high SNP rate, consistent with estimated divergence rates between Mus musculus domesticus and either M. m. musculus or M. m. castaneus. These data suggest that the genomes of these inbred strains are mosaics with the vast majority of segments derived from domesticus and musculus sources. These observations have important implications for the design and interpretation of positional cloning experiments.  相似文献   

8.
The medaka draft genome and insights into vertebrate genome evolution   总被引:3,自引:0,他引:3  
Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats. Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published, analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination and developmental genetics. In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including approximately 2,900 new genes, using 5'-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of approximately 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.  相似文献   

9.
A physical map of the mouse genome   总被引:1,自引:0,他引:1  
A physical map of a genome is an essential guide for navigation, allowing the location of any gene or other landmark in the chromosomal DNA. We have constructed a physical map of the mouse genome that contains 296 contigs of overlapping bacterial clones and 16,992 unique markers. The mouse contigs were aligned to the human genome sequence on the basis of 51,486 homology matches, thus enabling use of the conserved synteny (correspondence between chromosome blocks) of the two genomes to accelerate construction of the mouse map. The map provides a framework for assembly of whole-genome shotgun sequence data, and a tile path of clones for generation of the reference sequence. Definition of the human-mouse alignment at this level of resolution enables identification of a mouse clone that corresponds to almost any position in the human genome. The human sequence may be used to facilitate construction of other mammalian genome maps using the same strategy.  相似文献   

10.
Wang J  Wang W  Li R  Li Y  Tian G  Goodman L  Fan W  Zhang J  Li J  Zhang J  Guo Y  Feng B  Li H  Lu Y  Fang X  Liang H  Du Z  Li D  Zhao Y  Hu Y  Yang Z  Zheng H  Hellmann I  Inouye M  Pool J  Yi X  Zhao J  Duan J  Zhou Y  Qin J  Ma L  Li G  Yang Z  Zhang G  Yang B  Yu C  Liang F  Li W  Li S  Li D  Ni P  Ruan J  Li Q  Zhu H  Liu D  Lu Z  Li N  Guo G  Zhang J  Ye J  Fang L  Hao Q  Chen Q  Liang Y  Su Y  San A  Ping C  Yang S  Chen F  Li L  Zhou K  Zheng H  Ren Y  Yang L  Gao Y  Yang G  Li Z  Feng X  Kristiansen K  Wong GK  Nielsen R  Durbin R  Bolund L  Zhang X 《Nature》2008,456(7218):60-65
Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.  相似文献   

11.
A second generation human haplotype map of over 3.1 million SNPs   总被引:2,自引:0,他引:2  
We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.  相似文献   

12.
Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.  相似文献   

13.
Global variation in copy number in the human genome   总被引:3,自引:0,他引:3  
Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.  相似文献   

14.
The International HapMap Project   总被引:1,自引:0,他引:1  
The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome and to make this information freely available in the public domain. An international consortium is developing a map of these patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance our ability to choose targets for therapeutic intervention.  相似文献   

15.
16.
 玉米elm1 突变体使得光敏色素载色体合成受阻并导致光敏色素活性下降,从而使得突变体植株表现出对光的不敏感性.为研究玉米ELM1 基因序列的多态性及其与主要农艺性状之间的关联,本研究对玉米ELM1 基因在80 个自交系中进行了目标序列重测序,并与株高和穗位高2 个株型性状以及穗长、穗粗、轴粗、穗重、行粒数、穗行数和穗粒数7 个穗部性状进行关联分析.ELM1 基因在供试玉米自交系中共有85 个变异,包括73 个SNP 和12 个Indel.尽管该基因的编码区不含Indel,但15 个SNP 变异位点依然可以将编码区划分成7 种单倍型,并编码6 种ELM1 蛋白质.关联分析发现,玉米ELM1 基因中1 个非同义突变位点与穗位高存在显著关联,另有2 个非同义突变位点与行粒数存在显著关联.  相似文献   

17.
Linkage disequilibrium in the human genome   总被引:89,自引:0,他引:89  
With the availability of a dense genome-wide map of single nucleotide polymorphisms (SNPs), a central issue in human genetics is whether it is now possible to use linkage disequilibrium (LD) to map genes that cause disease. LD refers to correlations among neighbouring alleles, reflecting 'haplotypes' descended from single, ancestral chromosomes. The size of LD blocks has been the subject of considerable debate. Computer simulations and empirical data have suggested that LD extends only a few kilobases (kb) around common SNPs, whereas other data have suggested that it can extend much further, in some cases greater than 100 kb. It has been difficult to obtain a systematic picture of LD because past studies have been based on only a few (1-3) loci and different populations. Here, we report a large-scale experiment using a uniform protocol to examine 19 randomly selected genomic regions. LD in a United States population of north-European descent typically extends 60 kb from common alleles, implying that LD mapping is likely to be practical in this population. By contrast, LD in a Nigerian population extends markedly less far. The results illuminate human history, suggesting that LD in northern Europeans is shaped by a marked demographic event about 27,000-53,000 years ago.  相似文献   

18.
Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups. Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms (SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected--including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas--the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.  相似文献   

19.
Mu J  Duan J  Makova KD  Joy DA  Huynh CQ  Branch OH  Li WH  Su XZ 《Nature》2002,418(6895):323-326
The Malaria's Eve hypothesis, proposing a severe recent population bottleneck (about 3,000-5,000 years ago) of the human malaria parasite Plasmodium falciparum, has prompted a debate about the origin and evolution of the parasite. The hypothesis implies that the parasite population is relatively homogeneous, favouring malaria control measures. Other studies, however, suggested an ancient origin and large effective population size. To test the hypothesis, we analysed single nucleotide polymorphisms (SNPs) from 204 genes on chromosome 3 of P. falciparum. We have identified 403 polymorphic sites, including 238 SNPs and 165 microsatellites, from five parasite clones, establishing chromosome-wide haplotypes and a dense map with one polymorphic marker per approximately 2.3 kilobases. On the basis of synonymous SNPs and non-coding SNPs, we estimate the time to the most recent common ancestor to be approximately 100,000-180,000 years, significantly older than the proposed bottleneck. Our estimated divergence time coincides approximately with the start of human population expansion, and is consistent with a genetically complex organism able to evade host immunity and other antimalarial efforts.  相似文献   

20.
She X  Jiang Z  Clark RA  Liu G  Cheng Z  Tuzun E  Church DM  Sutton G  Halpern AL  Eichler EE 《Nature》2004,431(7011):927-930
Complex eukaryotic genomes are now being sequenced at an accelerated pace primarily using whole-genome shotgun (WGS) sequence assembly approaches. WGS assembly was initially criticized because of its perceived inability to resolve repeat structures within genomes. Here, we quantify the effect of WGS sequence assembly on large, highly similar repeats by comparison of the segmental duplication content of two different human genome assemblies. Our analysis shows that large (> 15 kilobases) and highly identical (> 97%) duplications are not adequately resolved by WGS assembly. This leads to significant reduction in genome length and the loss of genes embedded within duplications. Comparable analyses of mouse genome assemblies confirm that strict WGS sequence assembly will oversimplify our understanding of mammalian genome structure and evolution; a hybrid strategy using a targeted clone-by-clone approach to resolve duplications is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号