首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 159 毫秒
1.
通过化学还原法,在多壁碳纳米管(MWCNT)负载的二氧化锰纳米颗粒表面上进一步沉积银纳米颗粒,制备银/二氧化锰电极材料(Ag/MnO_2/MWCNT).利用循环伏安(CV)和线性扫描技术(LSV),测试了这些催化剂对碱性溶液中氧还原反应(ORR)的电化学活性.结果表明,MnO_2为5%(wt%)与10%的催化剂对ORR均表现出强的电活性,它们的ORR起始电位约为0.02 V(vs. Hg/Hg O).在Ag/5%MnO_2/MWCNT电极上,ORR的极限扩散电流密度是2.86×10~(-3)A/cm~2(1 200 r/min),高于Ag/MWCNT.Levich方程分析表明,在Ag/5%MnO_2/MWCNT催化剂上,ORR电子转移数明显大于Ag/MWCNT,说明在Ag/5%MnO_2/MWCNT上氧气能更彻底地还原.结果表明,适量MnO_2的加入能明显改善Ag/MWCNT对ORR的电活性.  相似文献   

2.
以羟丙基-β-环糊精(HP-β-CD)为添加剂修饰碳纳米管为复合载体,常温常压下,成功合成了Pd纳米簇状结构,并用于甲酸的电催化氧化.XRD及TEM结果表明,制备出的Pd纳米簇状结构由粒径均匀,约为3.6nm的纳米颗粒组成,且高度分散沉积在载体表面.循环伏安测试结果表明,催化剂Pd/HP-β-CD-MWCNTs对甲酸氧化表现出了较高的催化活性和电化学比表面积.研究表明,在HP-β-CD存在条件下,将Pd纳米簇沉积在未作处理的碳纳米管上制备的催化剂适合应用于甲酸燃料电池.  相似文献   

3.
以羟丙基-β-环糊精(HP-β-CD)为添加剂修饰碳纳米管为复合载体,常温常压下,成功合成了Pd纳米簇状结构,并用于甲酸的电催化氧化.XRD及TEM结果表明,制备出的Pd纳米簇状结构由粒径均匀,约为3.6nm的纳米颗粒组成,且高度分散沉积在载体表面.循环伏安测试结果表明,催化剂Pd/HP-β-CD-MWCNTs对甲酸氧化表现出了较高的催化活性和电化学比表面积.研究表明,在HP-β-CD存在条件下,将Pd纳米簇沉积在未作处理的碳纳米管上制备的催化剂适合应用于甲酸燃料电池.  相似文献   

4.
碳纳米管上沉积铂工艺的研究   总被引:7,自引:0,他引:7  
对碳纳米管上沉积纳米级金属铂颗粒的工艺进行了探索性的研究。经处理后的碳纳米管与氯铂酸乙醇溶液 ,在一定温度时缓慢加入 H2 O2 ,Na2 S2 O4溶剂 ,然后在室温下电磁搅拌 ,清洗、过滤 ,烘干后的黑色粉末放置管式炉中在氮气气氛下保温。经 X射线衍射 (XRD)、扫描电子显微镜(SEM)、透射电子显微镜 (TEM)的检测结果表明 ,沉积在碳纳米管上的铂颗粒尺寸细小 ,分布均匀 ,无铂颗粒大块聚集。这为碳纳米管作为催化剂载体的研究奠定了基础  相似文献   

5.
碳纳米管的合成与制备   总被引:1,自引:0,他引:1  
金属纳米颗粒和碳纳米管是两种重要的纳米材料,要实现碳纳米管的大批量制备,必须首先解决催化剂连续投放问题和催化剂与产物及时导出的问题.通过特殊的反应装置和工艺可以实现碳纳米管的连续制备,从而达到低成本大批量制备碳纳米管的目的.本文采用一个简单的方法合成了铁钴(Fe/Co)纳米颗粒,并采用化学气相沉积法实现了碳纳米管的批量合成,纳米颗粒的尺寸分布均匀,碳纳米管管径均匀、高纯度、结构完美.合成的碳纳米管机械强度高,同时还有独特的金属或半导体导电性.  相似文献   

6.
金属纳米颗粒和碳纳米管是两种重要的纳米材料。本文采用一个简单的方法合成了铁钴(Fe/Co)纳米颗粒,并采用化学气相沉积法实现了碳纳米管的批量合成,纳米颗粒的尺寸分布均匀,碳纳米管管径均匀、高纯度、结构完美。合成的碳纳米管机械强度高,同时还有独特的金属或半导体导电性。  相似文献   

7.
利用分子动力学和第一原理计算方法,对3种典型金属纳米颗粒在碳纳米管表面的浸润过程进行了建模分析.结果表明,金属纳米颗粒在较低的温度即可融化,并对碳纳米管表面浸润,其浸润能力取决于碳纳米管对金属原子的吸附力和金属原子之间的吸引力,两者之间的力差决定了不同类型金属原子对碳纳米管表面的浸润特性.  相似文献   

8.
采用化学气相沉积的方法在硅纳米孔柱阵列衬底上无催化剂生长出碳纳米管.分别在新制备的和制备后再在常温下自然氧化一周的硅纳米孔柱阵列衬底上进行无催化剂生长碳纳米管,结果发现新制备的硅纳米孔柱阵列表面没有碳纳米管长出,而自然氧化一周的硅纳米孔柱阵列表面有大量的碳纳米管出现.从硅纳米孔柱阵列的结构及表面氧化程度的不同加以分析,提出了无催化剂生长碳纳米管的生长机理,为在无金属催化剂条件下生长碳纳米管提供了一种新的方法.  相似文献   

9.
将硝酸回流预处理过的碳纳米管载体直接浸入镀Ni溶液中,通过化学镀在其表面上沉积出Ni纳米颗粒,并将所制备的Ni/CNTs催化剂用于制备新的高纯度碳纳米管.实验结果表明,碳纳米管载体的酸预处理时间对Ni/CNTs催化剂在碳纳米管制备过程中的催化性能有很大的影响,从而影响所制备的碳纳米管的形态.当碳纳米管载体在稀硝酸中回流预处理0.5 h后,所对应的Ni/CNTs催化剂催化制备的碳纳米管存在严重的缺陷,其主要结构为竹节状和鱼骨型,同时部分碳纳米管在生长过程中分叉,成Y形结构;当碳纳米管载体经稀硝酸回流预处理6 h后,其对应的Ni/CNTs催化剂催化生长的碳纳米管粉体中,碳纳米管的形态均匀,中空,无任何隔膜,因此碳纳米管载体较长时间的酸回流预处理对催化剂的性能有明显的改善.而且相比纯的纳米Ni,Co以及Ni/SiQ2催化剂,Ni/CNTs催化剂在碳纳米管的制备过程中,具有更高的催化活性.  相似文献   

10.
化学镀CuNiP-碳纳米管复合材料的制备与表征   总被引:1,自引:0,他引:1  
用化学镀的方法在多壁碳纳米管表面沉积Cu—Ni—P合金,制备碳纳米管复合材料.并对制备出来的复合材料进行透射电子显微镜(TEM)和X-射线衍射(XRD)表征.通过XRD对已制备的化学镀合金分析.得出沉积铜为立方面心结构而镍是非晶态.TEM观察复合碳纳米管,发现在其表面沉积有分散均匀纳米级的金属颗粒,Cu-Ni-P合金呈球形.  相似文献   

11.
采用改良的化学镀法制备得到了多壁碳纳米管(MWCNT)负载镍-磷(Ni-P)合金粒子催化剂。通过扫描电镜(SEM)、高分辨透射电镜(HR-TEM)、X射线衍射仪(XRD)、选区电子衍射(SAED)、电感耦合等离子体质谱(ICP-MS)等测试手段对催化剂的物性进行了表征。测试结果表明,圆球状的非晶态Ni-P纳米粒子均匀分散在多壁碳纳米管的侧壁,粒径大约为100nm。进一步通过循环伏安法(CV)对催化剂乙醇氧化的电催化性能进行了研究,结果表明MWCNT/Ni-P催化剂对于碱性介质下的乙醇氧化反应有着优异的电催化性能。  相似文献   

12.
通过化学镀工艺,采用以次磷酸钠为还原剂的镀液将镍-磷(Ni-P)纳米粒子负载于多壁碳纳米管(MWCNTs)表面。通过场发射扫描电子显微镜(FE-SEM)、高分辨透射电镜(HR-TEM)、X射线衍射仪(XRD)、选区电子衍射仪(SAED)、电感耦合等离子体质谱(ICP-MS)、傅里叶变换红外光谱仪(FT-IR)、差示热分析仪(DTA)、X射线光电子能谱仪(XPS)等测试手段对催化剂的物理化学性能进行了表征,分析结果表明:Ni-P纳米粒子化学组成为Ni73.8P26.2,为非晶态结构实心圆球体,均匀分散负载于MWCNTs外壁,平均尺寸约100 nm,粒度分布窄,镍元素与磷元素之间无明显电子转移,催化剂在350℃以下结构和热稳定性较强。通过催化剂对于苯加氢反应的研究评价了其催化性能,结果表明在Ni-P/MWCNTs催化剂作用下,苯全部选择性地转化为环己烷,催化剂显示出较好的催化活性(71.2%)和高选择性(100%)。  相似文献   

13.
通过两步固相反应法合成了不同MnO2质量分数的NiFe2O4尖晶石.利用扫描电镜、X射线衍射仪、差热分析仪、热膨胀仪和振动样品磁力计,分别对样品的结构、物相变化、烧结行为和磁性进行了研究.结果表明,添加的MnO2在烧结过程中发生了分解反应,Mn元素以Mn2+,Mn3+形式进入NiFe2O4尖晶石晶格中,样品无新相生成,材料仍是镍铁尖晶石结构.另外,MnO2能够促进烧结,添加1%MnO2后试样收缩速率达到最大时的温度比纯镍铁尖晶石低59°C.添加1%MnO2时,试样的饱和磁化强度(Ms)和矫顽力(Hc)分别为15.673 emu/g和48.316Oe.  相似文献   

14.
通过水热法在160℃条件下成功制备了手风琴状石墨烯/MnO2复合材料.通过场发射扫描电镜、透射电镜、X射线衍射、X射线能量色散谱、BET法以及拉曼光谱对材料进行表征.结果表明,手风琴状二氧化锰与层状石墨烯之间具有十分高效的贴合,这种创新性设计有效地利用了石墨烯的高电导率、大比表面积以及二氧化锰的优秀赝电容行为.电化学测试结果给出在0.2 A·g-1时,样品的比电容高达138 F·g-1,数倍增强于单独的二氧化锰或石墨烯样品.  相似文献   

15.
以碳球为模板,高锰酸钾为锰源,成功地制备了粒径较为均一的二氧化锰球壳,通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线粉末衍射(XRD)等手段对合成产品进行了表征,并考察了不同合成条件对空心球的影响。结果表明,合成的二氧化锰空心球粒径均一,壁厚可调。  相似文献   

16.
以多壁碳纳米管(MWCNTs)为载体,硝酸锶铵为锶源,采用水热法制备CeO2/CNTs复合管光催化剂.采用场发射扫描电子显微镜(FE.SEM)对碳纳米管负载CeO2前后的形貌进行了的表征;以阿莫西林溶液的降解为目标反应,考察了催化剂的紫外光、可见光(A>420 nm)催化活性.结果表明:所制备的催化剂基本保持了原始MWCNTs的纤维状形貌,二氧化锶在MWCNTs表面分布均匀,MWCNTs增强了污染物在催化剂表面的吸附,提高了对光的吸收和利用,因此所制备的CeO2/MWCNTs复合光催化剂表现出较高的光催化活性.  相似文献   

17.
采用共轭静电纺丝法制备聚丙烯腈(PAN)纳米纤维纱线,并在不同温度下将PAN纳米纤维碳化得到碳纳米纤维纱线。以KMnO 4为锰源,通过水热合成法在碳纳米纤维纱线上原位生长纳米二氧化锰(MnO 2),形成MnO 2/C复合纳米纤维纱线,分别采用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、场发射扫描电子显微镜(FE-SEM)、数字万用表对碳纳米纤维纱线和MnO 2/C复合纳米纤维纱线的化学组成、表观形貌、电学性能等进行表征,并分析碳化温度对碳纳米纤维纱线的形貌和电学性能的影响,以及水热反应中盐酸浓度对纳米MnO 2形貌和MnO 2/C复合纳米纤维纱线的影响。结果表明:碳化温度越高,得到的纱线表面越光洁,石墨化程度越高,电学性能也越好,1000℃碳化工艺得到的碳纳米纤维纱线电导率最高,为31.5 S/cm;与MnO 2复合后的碳纳米纤维纱线电导率大幅下降,当盐酸与高锰酸钾摩尔浓度比为4∶1时得到的复合纳米纤维纱线的电导率最高,为0.1200 S/cm。  相似文献   

18.
为探讨采用羧基化多壁碳纳米管(MWCNTs—COOH)非共价接枝神经生长因子(NGF)制备碳纳米管神经生长因子(MWCNTsNGF)复合物,考察复合物的生物活性。采用透射电子显微镜(TEM)表征MWCNTs—NGF复合物的微观形貌,酶联免疫吸附法(ELISA法)测定MWCNTs—NGF复合物载带NGF的量,MTT法测定了MWCNTs—NGF复合物的对嗜铬细胞瘤细胞(PCI2细胞)的毒性,PCI2细胞培养法评价复合物的生物活性,TEM表征复合物与细胞的分布情况。结果:TEM图像表明NGF连接到了MWCNT上,EI.ISA法测得MWCNTsNGF复合物载带NGF的量为797.63pg/mg,MWCNTs—NGF复合物对PCI2细胞有一定的毒性,生物活性试验表明NGF浓度相同的情况下,MwCNTs—NGF复合物组PCI2细胞的分化率明显高于NGF组。TEM图像表明碳纳米管能进入细胞。结论:碳纳米管能载带NGF进入细胞,使NGF能更好的表达生物活性。  相似文献   

19.
以抗癌药物多柔比星为模型药物,通过反相乳液聚合法制备了以聚乙烯吡咯烷酮为载体的多柔比星纳米颗粒,并用扫描电镜、激光粒度仪、红外光谱对其进行表征.激光粒度仪测试表明:在最佳制备条件下,纳米颗粒的平均粒径为18.8 nm,粒径分布为15~32 nm,与扫描电镜的结果基本吻合;红外光谱测试表明,制备的纳米颗粒由多柔比星和聚乙烯吡咯烷酮共同组成;体外释放研究表明,纳米粒子在体外释药缓慢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号