首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钛酸钡陶瓷粉末的低温燃烧合成   总被引:9,自引:0,他引:9  
以Ba(NO3)2-TiO2-C6H7O8.H2O为体系,在600℃加热进行低温燃烧合成实验,制得粒度为1.2-1.4μm的四方相BaTiO3陶瓷粉体,结果表明燃烧的均匀程度对燃烧产物的相组成和微观结构有很大的影响,通过热力学分析,提出低温燃烧合成BaTiO3陶瓷粉末的形成机理。  相似文献   

2.
建立了 CO气相燃烧合成纳米颗粒材料技术 ,利用 Ti Cl4 气相氧化合成粒度小于 1 0 0 nm的纯金红石相以及锐钛和金红石混合相的 Ti O2 颗粒。当混合温度升高、Ti Cl4 进料量减少、停留时间减小时 ,Ti O2 颗粒粒度减小。随混合温度升高、Ti Cl4 进料增大以及停留时间延长 ,Ti O2 颗粒中金红石含量增大。在反应物中加入 Al Cl3 作为晶型调节剂时 ,Ti O2 颗粒粒度减小 ,金红石含量增大。在 Al Cl3 含量 w>0 .0 5时 ,金红石达到 1 0 0 %  相似文献   

3.
在熔盐浴中用碳热还原法合成制备Ti(C,N)粉末的研究   总被引:1,自引:0,他引:1  
研究埋炭气氛下在熔盐(NaCl))浴中利用TiO2(锐钛矿)和炭黑合成Ti(C,N)粉末.运用热力学计算对反应过程进行分析,借助X射线衍射(XRD)、扫描电镜(SEM)和电子探针(EPMA)等手段对合成粉末进行分析,并对反应过程中可能发生的反应机理进行探讨.结果表明,NaCl对合成Ti(C,N)粉末有明显的促进作用:合成的Ti(C,N)平均粒度为2~6μm,且形状规则,颗粒间团聚较小:Ti(C,N)的形成过程为:TiO2→Ti4O7→Ti3O5→TiOxNy→Ti(C,N).  相似文献   

4.
采用正交实验设计,以Ca(OH)2,ZnO和H3PO4为原料,通过水热法合成出超细磷酸锌钙粉体.借助于动态光散射粒度分析仪、扫描电镜对产物的粒度和形貌进行分析表征,通过XRD图谱对反应机理进行研究,同时通过TG图谱对产物失水过程进行分析.实验结果表明:最佳反应条件是:Ca与Zn摩尔比n(Ca)∶n(Zn)=1∶2,反应温度为80℃,反应时间为12h,OP-10为表面活性剂:得到的产物颗粒大小均匀,粒度为1~2μm;最终产物CaZn2(PO4)2·2H2O是通过中间产物Ca[Zn(OH)3]2·2H2O与磷酸反应而生成的.CaZn2(PO4)2·2H2O分子的失水过程分为2个阶段,第1阶段失水温度为95~393℃,第2阶段失水温度为403~553℃.  相似文献   

5.
Ba(Zr,Ti)O_3是一种无铅弛豫铁电氧化物.运用第一性原理方法研究了纯BaTiO3和Ba(Zr,Ti)O_3的铁电极化值.在2×2×2的超胞中构造了BaZr0.5Ti0.5O3和BaZr0.25Ti0.75O3的原子结构.半掺杂情况下铁电属性的差异主要来源于Ti和Zr离子结构的分布,对Ba(Zr,Ti)O_3的弛豫性给出了合理的解释.基于温度统计的Ba(Zr,Ti)O_3模型给出了依赖于合成温度的平均极化值,结果有助于理解和调制无铅弛豫铁电体Ba(Zr,Ti)O_3.  相似文献   

6.
采用室温固相法合成了2种无机-有机杂化纳米材料,1∶12杂多酸苄基三甲基铵盐纳米微粒, (C10H16N)3[PW12O40]·5H2O (1) 和 (C10H16N)4[SiW12O40]·2H2O (2).分别用元素分析、IR、TG-DTA和TEM等对其组成、结构、颗粒大小和表面形态等进行了表征.并研究、探讨了2种材料对H2O2分解的催化作用.结果显示,2种产物的微粒仍保持Keggin结构,化合物1微粒近似为球形,化合物2微粒为棒形,平均粒径分别为60 nm和50 nm.2种季铵盐纳米微粒对H2O2分解均具有一定的催化作用.  相似文献   

7.
高能球磨法制备钛酸钡陶瓷及其掺杂改性   总被引:1,自引:0,他引:1  
以 TiO2和Ba(OH)2·8H2O为原料,用高能球磨法合成了BaTiO3前驱体,并掺加了PbO和Cat)以改善其介电性能.通过XRD、SEM等测定分析了相组成及晶体形貌.实验结果表明高能球磨过程使物料发生一定程度的无定型化,从而显著降低烧结温度,提高烧结体的结构致密度和力学性能.掺杂后PbO和CaO形成的(Ba,Ca)TiO3和(Ba,Pb)TiO3的介电性能明显改善,且随掺杂量的增大,烧结体的介电常数呈上升趋势.  相似文献   

8.
以LiOH·H2O,NH4H2PO4和V2O5为原料,加入导电碳,用高温固相法合成Li3V2(PO4)3;以LiOH·H2O,NH4H2PO4,NH4VO3为原料,柠檬酸作为还原剂和碳源,用溶胶凝胶法合成Li3V2(PO4)3,并对材料的化学电化学性能进行了研究.  相似文献   

9.
以钛酸丁酯和乙酸钡为前躯体原料,乙二醇甲醚和质量分数36%的乙酸为溶剂,冰醋酸为稳定剂,通过溶胶-凝胶法合成二钛酸钡( BaTi2 O5)粉体.制备凝胶的最佳工艺条件:混合溶液的pH=4,n(Ba(Ac)2):n(Ti(OC4 H9)4):n(CH3COOH):n(MOE)=1.00:2.00∶7.97∶21.17,保...  相似文献   

10.
以La(NO3)3为La源,采用非均匀形核淀积法在水热法合成的BaTiO3粉体表面包覆La(OH)3.根据溶度积理论计算非均匀形核淀积包覆工艺的pH值,并通过控制溶液的pH值,获得化学计量配比(Ba1-3x/2/Lax)TiO3的La表面包覆BaTiO3粉体和陶瓷.文中讨论了La包覆量对已包覆了SiO3的BaTiO3粉体的烧结特性、相结构、陶瓷电阻率、介电系数-温度特性的影响.实验结果表明:采用非均匀形核淀积包覆方法,容易获得均相、化学计量比的La改性BaTiO3陶瓷;随着La2O3掺杂量的增加,BaTiO3陶瓷的居里温度向低温方向移动,居里温度与La2O3掺杂量之间呈线性关系;而使BaTiO3陶瓷半导化所需要的La的掺杂量较采用氧化物固相反应法的高。  相似文献   

11.
合成了两种联吡啶钌的Keggin结构杂多钨酸盐,[Ru(bipy)3]2[SiW12O40]2C2H5OH8H2O,[Ru(bIPY)3]2[GeW12O40]4C2H5OH4H2O;并通过元素分析、UV-Vis光谱、IR光谱、^1HNMR谱、热重分析对所合成化合物进行了表征,它们在可见区有较强的吸收,其吸收起始于750nm附近。  相似文献   

12.
以Ba(OH)2.8H2O和ZrOCl2.8H2O为原料,首先将ZrOCl2.8H2O水解制备高活性ZrO2.H2O(H2ZrO3),再与Ba(OH)2.8H2O按1∶1(物质的量比)均匀混合研磨1h后,在100℃烘干反应15h,得到了立方相锆酸钡纳米晶.TEM形貌观察,粒子为均匀方形,并且分散均匀,粒径为40~80nm.通过对不同反应温度和反应时间所制备样品的XRD图谱分析,确定出了化学反应为该低温固态反应速度控制步骤的反应机理.  相似文献   

13.
BaO-TiO2-ZnO-Nb2O5系统微波陶瓷的相转变机制与介电性能   总被引:1,自引:0,他引:1  
对采用传统电子陶瓷工艺制备的BaO-TiO2-ZnO-Nb2O5(BTZN)微波介质陶瓷系统的相转变机制与介电性能进行了研究.XRD分析表明,系统的主晶相为Ba2Ti9O20、BaTi4O9.由Zn2 和Nb5 共同取代Ti4 ,作为施主受主杂质达到电价平衡,形成了BaTi4-xZnx/3Nb2x/3O9和Ba2Ti9-xZnx/3Nb2x/3O20固溶体,显著降低系统的烧结温度,获得优良的介电性能.同时,Nb5 能够抑制在空气气氛中烧结产生的Ti4 还原,防止Ti3 造成的介电性能恶化.BaO-TiO2- ZnO-Nb2O5系统在980℃已经开始大量生成Ba3Ti12Zn7O34相;自1050℃开始形成、并在1110℃大量生成Ba- Ti5O11相;BaTi5O11相的生成对于最终烧结过程中主晶相Ba2Ti9O20的形成起到很关键的作用.1110℃预烧、 1160℃烧结的该系统陶瓷材料的微波介电性能为:εr=37;Q=24 000(10 GHz);τf= 4.5×10-6/℃  相似文献   

14.
采用固相法合成层状化合物K0.81Li0.27Ti1.73O4,考察不同原料配比、反应时间及反应温度等条件对其氢离子交换反应和有机胺插层剥层反应的影响.结果表明:在0.1~14mol/L的HNO3溶液中K0.81Li0.27Ti1.73O4均可以通过氢离子交换生成H1.08Ti1.73O4·H2O固体钛酸,若反应温度高,则产物容易转变成TiO2.合适的氢离子交换条件是:室温下浸泡4~7d,n(HNO3)∶n(KLiTiO)=10~20,c(HNO3)=1~10mol/L.在正丙胺(n-PA)和正丁胺溶液中H1.08Ti1.73O4·H2O均可以进行插层剥层反应.反应温度高和有机胺与H1.08Ti1.73O4·H2O的物质的量比过小都容易使生成物转变成TiO2相.理想的插层剥层反应条件为:120℃,反应1d,n(n-PA)∶n(HTiO)=20~100.  相似文献   

15.
以竹纤维为模板,Ti(OC4H9)4和Li(Ac).2H2O为原料,用模板法制备锂离子电池微米管状Li4Ti5O12负极材料。采用XRD,SEM,BET,充放电实验和交流阻抗等对合成材料的结构、形貌和电化学性能进行表征。研究结果表明:制备的微米管状Li4Ti5O12负极材料由尖晶石型纳米Li4Ti5O12颗粒构成,具有较大的比表面积,该材料具有良好的电化学性能,在0.5~3.0 V,0.1C倍率下的首次放电比容量为178 mA.h/g,充放电循环100次后放电比容量仍保留162 mA.h/g,且倍率性能优异。  相似文献   

16.
纳米V8C7粉末的制备   总被引:3,自引:0,他引:3  
将V2O5溶解于有机酸溶液中, 通过喷雾干燥制得非晶态含钒的粉末前驱体, 将前驱体粉末还原/碳化后得到V8C7粉末. 采用X射线衍射仪﹑扫描电镜﹑透射电镜﹑碳氧分析仪对工艺过程产品进行分析. 结果表明: 前驱体是粒度为10~20 μm非晶态球形粉末, 当温度升高到400 ℃时, 前驱体粉末开始分解;当温度升高到600 ℃时, 前驱体粉末全部转变为V2O3与游离C原子级别混合均匀的复合粉末;随着温度的升高, 游离C还原碳化V2O3, 当温度升高到800 ℃时, 出现V4C3相;在约1 100 ℃时, 得到相成分均一的V8C7粉末, 其形貌是粒径为30~50 nm的一次颗粒形成的多孔空壳球形, 其总C含量为17.38%, 游离C含量为0.47%. 前驱体粉末在加热过程中相成分转变过程为: V2O3→V4C3→V8C7, 不经历V2O3 转变为VO的过程.  相似文献   

17.
苹果酸与三氯化钛反应,制得新的固态配合物Ti(OH)(C4H5O5)&;#183;1.5H20)。用元素分析、磁化率、IR和TG确定了配合物的组成。TG和DSC研究了它在空气、氮气下的热分解特性,计算机求解热分解反应各阶段的活化能Eα,焓变△rH和熵变△rs。将配合物在700℃无氧条件下与氨气反应,制得不含杂相(Ti2O3)的氮化钛晶体,这可作为低温合成氮化钛的一种新途径。讨论了制备氮化钛的反应机理。  相似文献   

18.
以醋酸钾(CH3COOK)、钛酸四丁酯(Ti(OC4H9)4)、无水乙醇和柠檬酸等为原料,采用柠檬酸配位燃烧法合成钛酸钾系列碳黑氧化催化剂(DOC)K2Ti2O5。利用X线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)表征K2Ti2O5的晶相及表面形貌;利用程序升温反应(TPR)考察老化时间、K2Ti2O5与碳黑颗粒的接触方式、焙烧温度、尾气中SO2和水蒸气含量、重复使用等因素对K2Ti2O5催化活性的影响。结果表明:K2Ti2O5催化活性较高,起燃温度低至280℃,峰值温度为322℃,催化活性在同类活性金属钛氧化物中最好,并且具有良好的重复使用稳定性及抗SO2和水蒸气稳定性。  相似文献   

19.
本文合成了10个新的过渡金属配合物,[MnL].H2O(1),[CuL].H2O(2),[Cu4L2Cl4](3),[Mn4L2Cl4](4),[CrL(H2O)2](NO3)(5),[Cd2L'2(CH3OH)2(NO3)2](6),[NiL]3(sal).2H2O(7),[CoL(H2O)2]2.4H2O(8),[CoL'2](C104)(9)和[(UO2)L(CH3OH)]2(10).通过元素分析和单晶X-射线结构分析准确确定了所有这些新化合物的分子结构.  相似文献   

20.
以TritonX-100/n-C10H21OH/H2O体系W/O微乳液为基础,分别以K8[Ce(Ⅳ)W10O33]·32H2O和Ba(NO3)2水溶液代替组分水制备W/O微乳液.然后将两种微乳液混和,得到淡黄色沉淀的Ba4[Ce(Ⅳ)W10O32]·24H2O纳米粒子.经电镜分析所得Ba4[Ce(Ⅳ)W10O33]·24H2O纳米粒子为粒径6 nm的圆球状颗粒.并用TG-DTA和Raman对该化合物进行了袁征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号