首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
针对列车高速驶入隧道时流场的三维、非定常及可压缩湍流等特性,建立了精细化的隧道-列车-空气三维CFD数值模型,对比分析洞口有无横风条件下列车驶入隧道过程中车体周边的瞬态流场结构、压力分布,并研究横风条件下车体的5项气动荷载(气动横向力、气动升力、倾覆力矩、偏航力矩和点头力矩)指标的瞬变特性以及风速和车速变化对其最大瞬变幅值的影响情况.研究结果表明:当列车在横风环境下驶入隧道,洞外部分车体两侧流场结构和压力分布差异显著,而洞内部分差异较小,从而引发列车进洞前后车体压差突变;列车在进洞过程中,车体的各项气动荷载均存在瞬变效应,且尾车同时呈现出倾覆、"上跳"、"蛇形"摆动以及"点头"等行为;风速变化对尾车偏航力矩变化幅值影响较显著,而车速变化对头车偏航力矩变化幅值影响较显著.  相似文献   

2.
基于横风作用下高速列车流场的非定常特性,建立了横风-列车-桥隧模型进行仿真计算,并通过1∶8列车动模型试验验证数值方法的准确性。随后研究横风条件下列车突出隧道时,隧道内外瞬态气动压力、气动荷载变化及流场特性,揭示了横风-列车-隧道之间的相互作用机理。研究结果表明:随着横风风速的增大,压力逐渐减小,但压力随时间的变化规律相似;横风对隧道出口处及隧道外监测点处的压力梯度有明显的影响,对于隧道内的监测点几乎没有影响;随着横风风速增大,隧道外背风侧正压峰值随风速增大略有减小,迎风侧正压峰值基本保持不变,背风侧负压峰值减小速率大于迎风侧;横风对列车突出隧道运行过程的压力波动影响有限,在横风风速为20 m/s时,隧道外界流场影响隧道内气动压力的范围不超过20 m。同种横风条件下,迎风侧、背风侧监测点处压力时程变化规律不相同,压力梯度峰值出现的位置也不同,且位于列车同侧越靠近地面的监测点处压力峰值及压力梯度峰值绝对值越大;横风下,气流经过车-桥系统时,在桥底部、列车背风侧顶部及底部发生明显的流动分离现象,导致隧道外车体两侧的压差大于隧道内车体两侧压差。  相似文献   

3.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

4.
运用滑移网格技术,选用工程上常用的k-ε双方程湍流模型,对横风环境下高速列车出隧道口时的瞬态空气动力特性进行数值模拟,得到不同风速、不同车速下列车受到的瞬态风荷载。计算结果表明:车体所受的瞬态风荷载在列车出隧道口的过程中急剧增大,随着列车逐渐脱离隧道而趋于常数;对车辆安全影响较大的侧向力、侧滚力矩中,头车受到的气动力变化幅值最大、尾车最小,中间车居中;列车出隧道过程是车体周围流场压力不断上升的过程;车体水平中心截面上的静压系数曲线在车头处存在1个大2个小共3个峰值;随着列车的运行,其中迎风面的第2峰值逐渐增大超过原最大峰值,而背风侧第2峰值基本保持不变。  相似文献   

5.
基于三维、可压缩、非定常N-S方程和k-ε双方程湍流模型,对不同主型线头部列车隧道交会气动效应进行数值模拟,得到列车在隧道内交会时的侧向力、总阻力以及隧道壁面压力变化。研究结果表明:隧道壁面和列车表面压力测点数值计算结果与动模型实验、实车试验结果较吻合,相对误差均在5%以下;单拱型列车隧道交会气动性能略优于双拱型;纵剖面型线对列车隧道交会气动力影响较大,纵剖面型线从下凹变化到上凸,头车、中间车和尾车侧向力幅值系数分别增加11.2%,14.0%和23.7%,最大总阻力系数增加7.2%;水平剖面型线从最宽外形变化到最窄外形,头车、中间车和尾车侧向力幅值系数分别增加3.4%,2.4%和4.6%,最大总阻力系数减小4.0%;改变头部主型线对隧道壁面压力变化影响较小,最大相对误差为1.7%。  相似文献   

6.
高铁线路隧道-桥梁-隧道路段常伴随强烈的横风,列车行驶至隧道与桥梁连接段时常常受到横风的突然冲击,严重影响了列车的行车安全性。基于计算流体力学RNG湍流模型和多孔介质理论,建立列车-隧道-桥梁-风屏障三维CFD数值模型和风-车-轨-桥动力耦合分析模型,研究了高速列车通过隧道-桥梁-隧道路段过程中列车的气动荷载和行车安全指标的变化特性。结果表明:桥隧相连段设置风屏障后,各节车厢的气动荷载突变幅值显著降低,降幅达50%以上,其中横向力和倾覆力矩受风屏障的影响最为显著,降幅高达88%以上;设置风屏障后列车行车安全指标显著降低,迎风侧和背风侧各轮对(除了头车1、3号轮对外)的安全指标波动幅度相同;头车的安全指标对整个列车行车安全性起控制作用,尤其是头车转向架前轮(即1、3号轮对)的;列车由隧道驶入桥梁过程中的行车安全性较由桥梁驶入隧道过程的小。  相似文献   

7.
采用三维、可压缩、非定常N-S方程的数值计算方法,对8辆编组的动车组在20 m/s横风下以250 km/h速度交会时列车表面瞬变压力和车体所受气动力及力矩进行分析,并采用间接验证方法,将风洞实验、动模型实验得到的结果分别与数值模拟结果进行对比。研究结果表明:间接验证方法下所得气动效应实验结果和数值模拟结果变化规律一致,压力幅值相对误差在5%以内;动车组横风下交会时,车体头、尾处测点压力差别较大,中部位于同侧测点压力差异较小,同一高度、不同纵向测点的压力变化波形及幅值基本一致,车体顶部测点压力始终为负;对于车体所受横向气动力及倾覆力矩,头车比中间车和尾车的大,背风车比迎风车的大;随着横风风速的增加,列车所受横向气动力及倾覆力矩峰值也迅速增加,严重威胁着动车组的安全运行。  相似文献   

8.
在合武(合肥—武汉)铁路上进行250km/h等级隧道空气动力性能实车试验;对货物列车单列过隧道及货物列车与CRH2高速动车组在隧道内交会时,集装箱箱体表面的压力变化历程及所受的气动力进行测试。测试结果表明:当2列车在隧道内交会时,交会压力波与隧道内的压力波叠加,造成隧道内列车交会产生的压力变化幅值远大于明线交会产生的压力变化幅值;车体交会侧压力变化幅值比非交会侧压力变化幅值大16%,使得车辆受到较大侧向力作用;双层集装箱车辆进入隧道口时,空气压差阻力急剧上升,之后又逐渐回落;在隧道内运行的平均阻力约为明线运行时阻力的1.56倍,货物列车120km/h和动车组250km/h在大别山隧道和鹰嘴石隧道内交会时,双层集装箱车由气动力引起的最大2s平均倾覆系数分别为0.063和0.067。  相似文献   

9.
对高速列车由横风环境驶入隧道过程中流场的非定常、可压缩以及湍流等特性,建立了隧道-列车-空气三维CFD数值模型,分析了列车驶入隧道时各节车厢的气动荷载瞬态变化特征及对应的车厢运行姿态变化,并从流场角度揭示了其变化机理,最后探讨了气动荷载对车厢的冲击效应.主要结论如下:(1)当列车由横风环境驶入隧道时,各节车厢的5项气动荷载均表现出显著的突变特征,相应地各节车厢均会呈现瞬间偏转以及瞬间"点头"等行为;(2)车厢两侧压差在纵向上的巨大差异是导致车厢横向力和倾覆力矩的突然卸载以及偏航力矩骤增的根本原因;(3)横风是导致气动荷载对车厢冲击强度显著升高的主要因素;(4)头车的安全系数是控制整列车运行安全性的关键.  相似文献   

10.
随着地铁列车速度不断提升,列车高速通过隧道风井(缓冲结构)时隧道内交变压力显著增加,会对列车内乘客造成严重影响。本文采用滑移网格方法,通过模拟地铁列车由车站开始加速并以最大速度通过隧道风井缓冲结构过程的气动性能,分析风井缓冲结构的参数对隧道内交变压力的影响规律。研究结果表明:列车表面压力数值计算结果与实车试验结果较吻合。风井缓冲结构可以有效减小列车通过风井时的压力变化幅值,风井前缓冲结构对列车通过时的压力变化率影响较大,而对列车压力变化幅值影响较小,风井后缓冲结构可以有效减缓列车通过风井过程的压力突变。随着缓冲结构横截面积增大,列车通过风井时的压力变化幅值呈减小趋势,但不同缓冲结构下列车表面压力差异较小。当缓冲结构总长度一定时,随着风井后缓冲结构长度增加,列车表面压力变化幅值呈减小趋势;当风井后缓冲结构的长度由0 m增加至50 m时,头车表面压力幅值减小21.5%。  相似文献   

11.
搭建列车空气动力学在线实车高精测试平台,对列车通过隧道及隧道交会工况下的压力波特性进行实车测试;探究运行速度、隧道长度、阻塞比、编组长度、交会位置等因素对隧道压力波的影响规律;根据隧道内压缩波、膨胀波在隧道内传播、反射、叠加的原理,推导出隧道通过及隧道交会工况下,最不利单线隧道长度、最不利双线隧道长度、最不利交会位置、最不利编组长度等计算公式。研究结果表明:车体表面压力变化幅值与列车速度的平方成正比;车内压力幅值与列车速度的n次方成正比,n的范围为1.3~1.8,n随着隧道长度的变化而变化;研究结果可为高速列车在隧道内运行时的安全性指标提供了压力波评判依据。  相似文献   

12.
基于三维非定常可压缩N-S方程和RNG k-ε两方程湍流模型,对顺弓、逆弓运行状态,隧道有效净空面积,隧道长度等因素影响下,高速列车进出隧道口受电弓气动载荷进行数值模拟研究。研究结果表明:数值计算得到的车体表面测点压力曲线变化规律与动模型试验结果完全一致,幅值相差在3%以内;列车进出隧道口时,受电弓弓头受交变载荷的作用,气动抬升力曲线将分别出现正负向脉冲波形;受电弓顺弓、逆弓运行时弓头气动抬升力差异明显,顺弓运行时正向峰值相对较大,而负向峰值明显更小;隧道有效净空面积减小时,弓头气动抬升力波动幅度明显增大;隧道长度的变化对列车进入隧道时弓头气动抬升力基本无影响,但对列车驶出隧道时气动抬升力变化特征影响显著。  相似文献   

13.
以我国高速铁路沿线上某座隧道-桥梁-隧道基础设施为工程背景,基于计算流体力学和多孔介质理论建立了列车-隧道-桥梁-风屏障-空气三维CFD数值仿真模型,研究了列车运行于隧-桥-隧全过程的气动荷载变化特性.针对横风环境中列车运行于桥隧相连段的过程,从流场角度进一步揭示了风屏障的存在与否对气动荷载突变效应的影响.结果表明:1)无风屏障条件下,各节车厢在"由桥至隧"过程的气动荷载波动幅度是"由隧至桥"过程中相应值的1.03~1.89倍,而风屏障的存在将使两过程中气动荷载波动幅度基本相等;2)列车气动横向力的变化对风屏障的影响最为敏感,而气动升力和俯仰力矩的敏感性相对较弱.  相似文献   

14.
为探明不同线间距下600 km/h高速磁浮列车明线交会时的气动特性,基于三维、非定常、可压缩的N-S方程和SST k-ω湍流模型,采用重叠网格技术,分析列车明线交会时的车身周围流场结构、列车交会压力波和列车侧向力,通过动模型试验来验证数值模拟方法的准确性。研究结果表明:在不同线间距下,列车交会时的车身周围流场分布特征相似,随线间距增大,列车尾涡展向角逐渐增大,两交会侧车身之间流场的速度和压力不断减小;不同线间距下的列车压力波变化规律一致,压力波幅值与列车运行速度的二次方近似呈正比,当线间距由5.1 m分别增大至5.6 m和6.1 m时,压力波幅值分别减小28.2%和42.4%,且增大线间距对列车压力波正波缓解作用比负波的大,头波的缓解作用比尾波的大;列车交会过程中头车侧向力幅值比尾车和中间车的幅值大,增大线间距对尾车侧向力的缓解作用比头车和中间车的大,当线间距由5.1 m增大至6.1 m时,头车、中间车和尾车的侧向力幅值分别减小33.8%、34.1%和35.7%。  相似文献   

15.
针对高速列车全速通过地下车站时所引起的瞬变压力问题,采用列车气动性能动模型试验装置,对8编组高速列车以速度300 km/h通过地下车站时的气动效应进行模拟,分析车站内设有竖井时列车表面、站台屏蔽门表面压力分布特性以及竖井面积对瞬变压力的影响。研究结果表明:当高速列车通过设置有竖井的地下车站时,列车表面、屏蔽门表面左右对称测点压力变化趋势基本一致,压力幅值相差不大;屏蔽门表面压力幅值沿纵向逐渐增大,沿高度方向则变化不大;随着竖井面积增大,列车、屏蔽门表面测点压力幅值均不断下降,相较于无竖井工况,列车表面测点压力幅值最大可降低48.87%,屏蔽门表面测点压力幅值最大可降低71.07%,其中,当竖井面积与隧道面积之比超过0.26时,进一步增大竖井面积,竖井对列车表面、屏蔽门表面的压力幅值的影响不明显。  相似文献   

16.
采用三维、可压N-S方程、k-?双方程湍流模型和滑移网格技术,对不同的流线型长度、头部型线列车明线交会压力波及气动力的关系进行计算分析。研究结果表明:交会压力波头波幅值数值计算结果与实车试验结果较吻合,两者相对误差为4.9%;当列车流线型长度从8 m增大至12 m时,交会压力波、侧向力、侧滚力矩幅值分别减小27.0%,39.2%和36.2%;头部主型线中,水平剖面型线对交会气动性能的影响最大,当水平剖面型线斜率由0.076增大到0.184时,交会压力波、侧向力、侧滚力矩幅值分别增大12.1%,7.3%和8.5%;纵剖面型线对列车交会气动性能的影响较小,当斜率从0.505增大到0.713时,交会压力波、侧向力和侧滚力矩幅值分别增大1.90%,0.65%和0.89%;当横截面型线斜率从0.194增大到0.235时,交会压力波、侧向力和侧滚力矩幅值分别增大4.1%,3.1%和4.0%。  相似文献   

17.
为研究桥上动车组穿越复杂峡谷地形时的横风气动特性,本文以CRH6型动车组为研究对象,基于三维、粘性、不可压缩的N-S方程和k-ε湍流模型,采用滑移网格技术,耦合高架桥、横风和车速,计算复杂三维峡谷地形下动车组的气动载荷.研究结果表明:列车表面压力在流线型头部有显著变化,压力最大值出现在列车头部鼻端点区域;随着车速和横风...  相似文献   

18.
采用三维、可压缩、非定常N-S方程的数值计算方法,对8辆编组的高速列车以300 km/h速度通过带有套衬结构隧道时车体表面及隧道壁面的瞬变压力进行分析。研究结果表明:数值计算结果与动模型实验结果较吻合,2种方法得到的压力曲线变化规律一致,幅值误差在5%以内;列车通过隧道时,车体头、尾处测点压力差别较大,中部测点压力差异较小;沿列车车身方向,测点正压幅值逐渐减小,负压幅值逐渐增大;隧道壁面测点压力峰峰值在隧道进、出口附近较小,而在靠近隧道中部时较大;隧道内安装套衬对于高速铁路双线隧道气动效应影响很小,加装套衬前后,测点压力幅值差异在2%以内。因此,建议在对高速铁路隧道病害整治中,考虑使用套衬技术。  相似文献   

19.
基于N-S方程及k-ε两方程紊流模型,采用有限元法对2列高速列车在隧道内交会时引起的车内压力变化及各参数对乘坐舒适性的影响进行了仿真分析.研究结果表明:2列高速列车在隧道内会车时的瞬变压力值与列车会车的地点、列车长度、列车速度及列车的密封指数均有关系,同车长、车速、密封指数的情况下,会车在隧道中部时瞬变压力变化值最大;同隧长、车速、密封指数的情况下,会车于相同地点时,较长车长的瞬变压力最大变化值要高于较短车长的;当列车的密封指数大于15s时,各种计算工况均能满足列车内瞬变压力容许值1.25kPa/3s的评价标准.  相似文献   

20.
为了降低列车交会空气压力波、减小空气阻力、使列车具有正的气动升力,根据给定的列车横断面,设计3种磁浮列车流线型头部外形。利用可压缩粘性流体的N-S方程和k-ε双方程湍流模型,采用有限体积法对包括TR08磁浮列车在内的4种高速磁浮列车周围流场进行数值模拟,得出磁浮列车在不同运行速度下的气动阻力系数、升力系数及列车以430km/h运行时的交会压力波幅值。此外,为优化气动外形方案,对3种方案进行综合比较分析。研究结果表明:随着流线型头部长度的增加,列车空气动力性能提高;在车头流线型长度相同的情况下,随着最大纵剖面轮廓线曲率的变小,交会压力波降低,水平投影轮廓线变宽,列车阻力增加;最优方案为列车交会压力波和空气阻力均较小、流线型头部为扁梭形的方案三。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号