首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用传统陶瓷工艺制备了(Bi0.94(Na0.94-xLix))0.5Ba0.06TiO3(缩写为BNBT6 - xL)无铅压电陶瓷.研究了Li+取代A位Na+后,(Bi0.5Na0.5)0.94Ba0.06TiO3(缩写为BNBT6)陶瓷的物性变化.x在0.01 ~0.11之间变化,BNBT6陶瓷三方-四方共存的晶体...  相似文献   

2.
采用传统陶瓷工艺制备了CeO2掺杂(Bi0.5Na0.5)0.94Ba0.06TiO3(缩写为 BNBT6)无铅压电陶瓷.研究了CeO2掺杂量(0~1.0wt%)对BNBT6陶瓷的密度、相结构、微观结构及介电与压电性能的影响.XRD表明,CeO2掺杂量在0~1.0%wt之间变化,没有改变BNBT6陶瓷纯的钙钛矿结构.SEM表明,少量的CeO2掺杂,改变了陶瓷的微观结构.介电温谱表明,随着CeO2掺杂量的增加,铁电相向反铁电相转变温度(Td)降低. 室温下,CeO2掺杂量为0.4wt%时,BNBT6陶瓷样品有很好的性能:密度为5.836g/cm3,压电常数为136pC/N,平面机电藕合系数为30.3%, 相对介电常数为891, 介电损耗为0.0185.  相似文献   

3.
采用传统压电陶瓷工艺制备了(1-x)B i0.5(Na0.8K0.2)0.5TiO3-xNaSbO3无铅压电陶瓷,利用XRD、SEM等测试技术表征了陶瓷的晶相结构和表面形貌,利用一些电学仪器测试了其介电和压电性能.结果表明,该体系陶瓷具有单相钙钛矿结构,适量的NaSbO3掺杂可以提高该陶瓷的致密性.在室温下,当掺杂量为0.5%时,该体系表现出较好的压电性能:压电常数d33和机电耦合系数kp分别达到107pC/N和0.209;当掺杂量为0.7%时,εr和tanδ分别为1 551和0.05.  相似文献   

4.
采用传统固相法制备了新型(1-x)B i0.5(Na0.8K0.2)0.5TiO3-x(B i0.1La0.9)FeO3无铅压电陶瓷,利用XRD、SEM等测试技术表征了该陶瓷的晶体结构、表面形貌、压电和介电性能.研究结果表明,在所研究的组成范围内陶瓷材料均能形成纯的钙钛矿固溶体.压电性能随x的增加先增加后减少,在x=0.005时压电常数及机电耦合系数达到最大值(d33=149pC/N,kp=0.270).  相似文献   

5.
采用传统陶瓷工艺合成了CeO2掺杂(Bi0.94Na0.89Li0.05)0.5Ba0.06TiO3 (缩写为 BNBT6-0.05L)无铅压电陶瓷.研究了CeO2掺杂量(质量百分比为0~1.0%)对BNBT6-0.05L陶瓷相结构、体密度、微观结构及压电与介电性能的影响.XRD表明,CeO2扩散进入了BNBT6-0.05L陶瓷晶格内形成了纯的钙钛矿相.SEM表明,少量的CeO2掺杂,改变了陶瓷的微观结构.介电温谱表明,随着CeO2掺杂量的增加,铁电相向反铁电相转变温度(Td)降低. 室温下,CeO2掺杂量为0.2%时,BNBT6-0.05L陶瓷样品有很好的性能:体密度为5.901 g/cm3,压电常数为142 pC/N,平面机电藕合系数为31.3%, 相对介电常数为860, 介电损耗为0.02  相似文献   

6.
Na0.5Bi0.5TiO3-BaTiO3无铅压电陶瓷制备及性能   总被引:1,自引:0,他引:1  
研究了不同烧结制度下的NBBT6陶瓷的致密度、介电和压电性能.870℃左右预烧,可以得到致密且压电和介电性能较好的陶瓷(d33=107 pC/N.∈r=750,tanδ为3.23%).通过相应的粒度分析可知,提高预烧温度对粒度的影响不太大,但可用于湿法制备工艺中的原材料制备,解决湿法工艺中材料易被极性水分子解离而影响材料组分的问题.加入少量的BaTiO3到NBT中形成NBT-BT的固溶体,通过对压电介电性能及XRD的分析可知.当质量分数x=0.06时.(1-x)Na0.5Bi0.5TiO3-xBaTiO3晶体结构出现由三方相到四方相的转变,此时的性能达到最大值(d33=114 pC/N,∈r=1 173.tanδ为3.4%).  相似文献   

7.
采用固相合成法制备了(Na_(0.5)Bi_(0.5))_(0.94)Ba_(0.06)Ti_(1-x)Zr_xO_3(x=0-0.05)压电陶瓷,通过XRD、SEM和电学性能测试方法研究了不同含量ZrO_2对陶瓷样品结构和性能的影响.XRD分析发现,ZrO_2的掺杂没有改变陶瓷的钙钛矿结构,但Zr元素的掺杂使得晶胞参数减小;SEM图片显示,随着ZrO_2的加入,样品平均晶粒尺寸减小,且晶粒尺寸分布更加均匀;ZrO_2的加入显著影响了样品的电学性能,随着ZrO_2的加入,室温剩余极化强度(P_r)、矫顽场(E_c)和压电常数(d_(33))都先增加后减小,当x=0.01时P_r和E_c分别达到最大值35.7μC/cm~2和4.72kV/mm,当x=0.03时d_(33)达到最大值144pC/N;随着ZrO_2的加入,陶瓷样品常温介电常数增大,退极化温度T_d逐渐下降,且各样品都具有典型的弛豫特性.  相似文献   

8.
利用传统陶瓷工艺制备了MnO2(0~0.4wt%)掺杂[Bi0.5(Na1-xAgx)0.5]1-yBayTi O3(x=0.06,y=0.06)无铅压电陶瓷,研究了掺杂对该体系陶瓷的结构、压电和介电性能的影响.结果表明,陶瓷的压电常数d33随锰掺杂量增加而减小;适量锰离子的引入可降低介电损耗tgδ,提高机械品质因数Qm.当锰掺杂量达到0.4wt%时,陶瓷的压电性能大幅度降低.锰含量为0.15wt%时该体系陶瓷具有较好的性能压电常数d33=160pC/N,机电耦合系数kp=34%,kt=52%,介电常数εr=804,机械品质因数Qm=163,介电损耗tgδ=2.0%.  相似文献   

9.
研究了(Bi1/2Na1/2)TiO3-BaTiO3压电陶瓷在准同型相界附近锰离子掺杂对材料微观结构、压电和介电性能的影响.采用XRD和SEM等方法对材料的相结构和晶粒生长情况进行了研究.结果表明:掺锰有促进烧结的作用并能使晶格发生畸变,使相结构中的四方相向三方相转变;当掺杂量质量分数为0.3%时,可以获得较好的综合性能,压电常数d33=124 pC/N,径向机电耦合系数kp=31%,介电常数3Tε3/0ε=615,介电损耗tanδ=0.014,机械品质因数Qm=267,频率常数Np=3 050 Hz.m.  相似文献   

10.
目的制备(K0.5Na0.5)NbO3(KNN)无铅压电陶瓷并研究其结构和性能。方法采用传统固相法,用XRD,SEM等手段对KNN无铅压电陶瓷材料的相结构和显微形貌进行了表征。结果KNN压电陶瓷材料为单一的正交晶系的钙钛矿结构。对KNN无铅压电陶瓷的电性能测试表明,KNN陶瓷具有高的压电常数d33=127 pC/N,高的机电耦合系数Kp=0.41,高的温度Tc=428℃和低的介电损耗tanδ=0.028(10 kHz)的优点;KNN陶瓷存在着饱满的电滞回线,其剩余极化率Pr为18.8μC/cm2,其矫顽场Ec为9.65 kV/cm;所得的陶瓷的密度和电性能要远优于用同样制备方法和烧结方式所得的陶瓷的性能,并且也优于用等静压工艺所得的陶瓷的性能。结论KNN陶瓷是高频压电器件较理想的备选材料之一。  相似文献   

11.
采用传统陶瓷烧结工艺制备了(K0.44Na0.5Li0.06)(Nb0.94Sb0.06)O3无铅压电陶瓷,研究了不同烧结温度对(K0.44Na0.5Li0.06)(Nb0.89Ta0.05Sb0.06)O3陶瓷的晶相、微观形貌、压电、介电和铁电性能的影响.研究结果表明:在不同烧结温度下,XRD衍射分析表明陶瓷样品都形成了钙钛矿的正交相结构,但具有不同的SEM形貌和电学性能.在烧结温度1 060℃时晶粒发育比较完全,致密性较高;且陶瓷具有最佳的电学性能:d33=233 pC/N,k p=49%,εr=1 172和P r=24μC/cm2.  相似文献   

12.
利用企业的电子陶瓷工艺制备了ZnO掺杂Bi0.5(Na1-x-yLixKy)0.5Ti O3无铅压电陶瓷,研究了ZnO掺杂对该体系陶瓷的介电压电性能与微观结构的影响.X射线衍射结果表明,当ZnO含量小于0.5wt%时,掺杂的ZnO扩散进入了Bi0.5(Na1-x-yLixKy)0.5Ti O3钙钛矿结构的晶格;SEM观察结果表明,少量的ZnO掺杂可以改善该陶瓷的微结构;介电压电性能研究结果表明,当掺杂量较少时,ZnO对该体系陶瓷的介电压电性能有一定的改善,但不明显.  相似文献   

13.
利用传统的电子陶瓷工艺制备了La^3+掺杂Bi0.5(Na1-x-yKxLiy)0.5TiO3无铅压电陶瓷,研究了La^3+掺杂对该体系陶瓷的介电压电性能与微观结构的影响.结果表明,少量的La^3+掺杂可以改善该陶瓷的微结构;当掺杂量为0.1%时,该陶瓷体系的压电性能有较大的改善,室温下该体系配方的压电常数d33可达215pC/N,径向机电耦合系数kp达到37.4%,但同时介电损耗增大,机械品质因子降低.当掺杂量达到1.5%以后,陶瓷的压电性能严重下降.  相似文献   

14.
采用传统陶瓷制备方法,制备无铅新压电陶瓷材料(1-x)Na1/2Bi1/2TiO3-xNa1/2Bi1/2(Sb1/2Nb1/2)O3.利用X射线衍射,精密阻抗分析仪研究Na1/2Bi1/2TiO3陶瓷B位复合离子(Sb1/2Nb1/2)4+取代对晶体结构、弥散相变与介电弛豫行为的影响,并根据宏畴-微畴转变理论探讨该体系陶瓷产生介电弛豫的机理.研究结果表明,在所研究的组成范围内,陶瓷材料均能够形成纯钙钛矿固溶体.该体系陶瓷具有2个介电反常峰tf和tm,表现出与典型弛豫铁电体明显不同的弛豫行为,掺杂量低的陶瓷仅在低温介电反常峰tf附近表现出明显的频率依赖性,而掺杂量高的陶瓷材料在室温和tf之间都表现出明显的频率依赖性.  相似文献   

15.
16.
分析了溶胶凝胶工艺制备Bi0.5(Na0.85K0.15)0.5Ti O3微粉中工艺条件的影响,得到了稳定的溶胶,并在750℃合成了颗粒尺寸为100nm左右的微粉;利用该粉体在1175℃烧结得到了性能较好的Bi0.5(Na0.85K0.15)0.5Ti O3陶瓷,d33=100pC/N,Qm=193.  相似文献   

17.
BiCoO_3对BNT–BKT陶瓷压电性能与退极化温度的影响   总被引:1,自引:0,他引:1  
采用传统陶瓷制备方法,制备一种Bi基钙钛矿型无铅压电陶瓷(1-x)Bi0.5(Na0.82K0.18)0.5TiO3-xBiCoO3(即BNKT-BCx)。研究Bi基铁电体BiCoO3对该体系陶瓷微观结构、压电性能和退极化温度的影响。研究结果表明:在所研究的组成范围内陶瓷材料均能够形成纯钙钛矿固溶体,随BiCoO3含量的增加,陶瓷由三方、四方共存转变为伪立方结构,晶粒尺寸明显增加;在x=0.01时该体系陶瓷压电性能达到最大值:压电常数d33=148 pC/N,机电耦合系数kp=0.329。采用平面机电耦合系数kp和极化相位角θmax与温度的关系来确定陶瓷退极化温度,发现退极化温度随BiCoO3含量的增加而降低。  相似文献   

18.
用传统固相反应法制备不同MgO含量的BST陶瓷,并研究MgO掺杂对BST陶瓷结构和性能的影响.MgO掺杂后陶瓷的XRD图谱显示存在单一的钙钛矿结构,且XRD衍射峰随着MgO含量的增加向低角度方向漂移.密度测量表明,MgO掺杂后BST陶瓷的密度有所增加,并且随着MgO含量的增加而增加,FESEM照片也证实MgO掺杂后BST陶瓷的致密性有所增加.介电性能测量结果表明,MgO掺杂后介电常数和介电损耗均减小,介电色散也减弱.介电温谱显示,MgO掺杂后介电峰被压抑和展宽,表明出现扩散相变.14℃时测量的电滞回线表明MgO掺杂后陶瓷的自发极化和矫顽场均减小,说明陶瓷的铁电性能减弱.  相似文献   

19.
钛酸铋钠基陶瓷中含有易挥发性Na+,为研究Na+含量对钛酸铋钠基陶瓷结构和电学性能的影响,采用传统固相反应法制备了(Na0.5Bi0.5)0.94Ba0.06TiO3+xwt.%Na2CO3(记为BN6BTxNa,x=0、0.5、1、2)无铅压电陶瓷。研究了添加过量Na2CO3对(Na0.5Bi0.5)0.94Ba0.06TiO3陶瓷的烧结性能、晶体结构、显微结构、压电性能、介电性能和铁电性能的影响。发现在1 180℃烧结的陶瓷均具有纯钙钛矿结构,陶瓷的晶粒尺寸随Na2CO3含量不同而改变。钛酸铋钠基陶瓷的结构和电学性能与Na+含量密切相关。研究结果表明:1 180℃烧结的x=1组分陶瓷具有最大的体密度(5.73g/cm3),最大的压电常数(88pC/N),较高的剩余极化强度(25.5μC/cm2)和较低的矫顽场(27.5kV/cm)。  相似文献   

20.
采用传统陶瓷工艺,制备了(Bi0.5Na0.5)0.94Ba0.06TiO3压电陶瓷.研究了烧结温度为1 120~1 180℃时陶瓷样品的密度、相组成、显微组织、压电和介电性能.结果表明,所有样品均为三方、四方相共存,有高的体密度.1 160℃烧结陶瓷,体密度可达到最大值(理论密度的98%),并且有很好的电子性能(压电系数d33=131 pC/N,平面机电耦合系数 kp=0.297,介电常数(ε)r=615,介电损耗tanδ=0.020.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号