首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HCN channels: Structure, cellular regulation and physiological function   总被引:2,自引:1,他引:1  
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated pore loop channels. HCN channels are unique among vertebrate voltage-gated ion channels, in that they have a reverse voltage-dependence that leads to activation upon hyperpolarization. In addition, voltage-dependent opening of these channels is directly regulated by the binding of cAMP. HCN channels are encoded by four genes (HCN1–4) and are widely expressed throughout the heart and the central nervous system. The current flowing through HCN channels, designated Ih or If, plays a key role in the control of cardiac and neuronal rhythmicity (“pacemaker current”). In addition, Ih contributes to several other neuronal processes, including determination of resting membrane potential, dendritic integration and synaptic transmission. In this review we give an overview on structure, function and regulation of HCN channels. Particular emphasis will be laid on the complex roles of these channels for neuronal function and cardiac rhythmicity. Received 22 August 2008; received after revision 22 September 2008; accepted 24 September 2008  相似文献   

2.
The calcineurin pathway has been reported to be essential for the development of azole resistance in Candida albicans. The depletion or ectopic over-expression of RTA2 increased or decreased susceptibility of C. albicans to azoles, respectively. CaCl2- induced activation of the calcineurin pathway in wildtype C. albicans promoted resistance to azoles, while the Ca 2+ chelator (EGTA), calcineurin inhibitors (FK506 and cyclosporin A) and the deletion of RTA2 blocked the resistance-promoting effects of CaCl2. Furthermore, we found that RTA2 was up-regulated in a calcineurin-dependent manner. The depletion of RTA2 also made the cell membrane of C. albicans liable to be destroyed by azoles and RTA2 over-expression attenuated the destroying effects. Finally, the disruption of RTA2 caused an increased accumulation of dihydrosphingosine (DHS), one of the two sphingolipid long-chain bases, by decreasing release of DHS. In conclusion, our findings suggest that RTA2 is involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 14 July 2008; received after revision 29 August 2008; accepted 16 September 2008  相似文献   

3.
TheRhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for an effective symbiosis with alfalfa plants. C4-dicarboxylates are the major carbon source taken up by bacteroids. Genetic analysis of Dct mutant strains led to the isolation of thedct carrier genedctA and the regulatory genesdctB anddctD. The carrier genedctA is regulated in free-living cells by the alternative sigma factor RpoN and the two-component regulatory system DctB/D. In addition, DctA is involved in its own regulation, possibly by interacting with DctB. In bacteroids, besides the DctB/DctD system an additional symbiotic activator is thought to be involved indctA expression. Further regulation ofdctA in the free-living state is reflected by diauxic growth of rhizobia, with succinate being the preferred carbon source. The tight coupling of C4-dicarboxylate transport and nitrogen fixation is revealed by a reduced level of C4-dicarboxylate transport in nitrogenase negative bacteroids.  相似文献   

4.
Human lymphocyte melatonin, through membrane and nuclear receptors binding, acts as an activator in IL-2 production. Antagonism of membrane melatonin receptors using luzindole exacerbates the drop of the IL-2 production induced by PGE2 in peripheral blood mononuclear and Jurkat cells. This paper studies the melatonin membrane and nuclear receptors interplay in PGE2-diminished IL-2 production. The decrease in IL-2 production after PGE2 and/or luzindole administration correlated with downregulation in the nuclear receptor RORα. We also highlighted a role of cAMP in the pathway, because forskolin mimicked the effects of luzindole and/or PGE2 in the RORα expression. Finally, a significant RORα downregulation was observed in T cells permanently transfected with inducible MT1 antisense. In conclusion, we show a novel connection between melatonin membrane receptor signalling and RORα expression, opening a new way to understand melatonin regulation in lymphocyte physiology. Received 23 September 2008; received after revision 19 November 2008; accepted 21 November 2008  相似文献   

5.
It has been proposed that neuroinflammation, among other factors, may trigger an aberrant neuronal cell cycle re-entry leading to neuronal death. Cell cycle disturbances are also detectable in peripheral cells from Alzheimer’s disease (AD) patients. We previously reported that the anti-inflammatory 15- deoxy-Δ12,14-prostaglandin J 2 (15d-PGJ 2) increased the cellular content of the cyclin-dependent kinase inhibitor p27, in lymphoblasts from AD patients. This work aimed at elucidating the mechanisms of 15d-PGJ 2-induced p27 accumulation. Phosphorylation, half-life, and the nucleo-cytoplasmic traffic of p27 protein were altered by 15d-PGJ2 by mechanisms dependent on PI3K/Akt activity. 15d-PGJ 2 prevents the calmodulin-dependent Akt overactivation in AD lymphoblasts by blocking its binding to the 85-kDa regulatory subunit of PI3K. These effects of 15d-PGJ 2 were not mimicked by 9,10-dihydro-15-deoxy-Δ12,14- prostaglandin J 2, suggesting that 15d-PGJ 2 acts independently of peroxisome proliferator-activated receptor γ activation and that the α,β-unsaturated carbonyl group in the cyclopentenone ring of 15d-PGJ 2 is a requisite for the observed effects. Received 14 July 2008; received after revision 2 September 2008; accepted 12 September 2008  相似文献   

6.
Endocrine-dependent expression of circadian clock genes in insects   总被引:1,自引:0,他引:1  
Current models state that insect peripheral oscillators are directly responsive to light, while mammalian peripheral clock genes are coordinated by a master clock in the brain via intermediate factors, possibly hormonal. We show that the expression levels of two circadian clock genes, period (per) and Par Domain Protein 1 (Pdp1) in the peripheral tissue of an insect model species, the linden bug Pyrrhocoris apterus, are inversely affected by contrasting photoperiods. The effect of photoperiod on per and Pdp1 mRNA levels was found to be mediated by the corpus allatum, an endocrine gland producing juvenile hormone. Our results provide the first experimental evidence for the effect of an endocrine gland on circadian clock gene expression in insects. Received 31 October 2007; received after revision 7 January 2008; accepted 9 January 2008 D. Dolezel, L. Zdechovanova: These authors contributed equally to this work.  相似文献   

7.
Methionine adenosyltransferases (MATs) are the family of enzymes that synthesize the main biological methyl donor, S-adenosylmethionine. The high sequence conservation among catalytic subunits from bacteria and eukarya preserves key residues that control activity and oligomerization, which is reflected in the protein structure. However, structural differences among complexes with substrates and products have led to proposals of several reaction mechanisms. In parallel, folding studies begin to explain how the three intertwined domains of the catalytic subunit are produced, and to highlight the importance of certain intermediates in attaining the active final conformation. This review analyzes the available structural data and proposes a consensus interpretation that facilitates an understanding of the pathological problems derived from impairment of MAT function. In addition, new research opportunities directed toward clarification of aspects that remain obscure are also identified. Received 22 August 2008; received after revision 22 September 2008; accepted 26 September 2008  相似文献   

8.
Summary Luffariellolide (2) is a sesterterpene from the Palauan spongeLuffariella sp. that has useful anti-inflammatory properties. In contrast with the irreversible action of manoalide (1) on phospholipase A2, luffariellolide (2) is a slightly less potent but partially reversible PLA2 inhibitor.30 December 1986Acknowledgment We thank Edward Luedtke, Elise Clason and Ellen Snideman for performing some of the assays reported above. The sponge was identified by Dr. Klaus Rützler, Smithsonian Institution, Washington, D.C. The research was supported by grants from Allergan Pharmaceuticals and the California Sea Grant College Program (Projects R/MP-30 and R/MP-31).  相似文献   

9.
Two major functions of the Golgi apparatus (GA) are formation of complex glycans and sorting of proteins destined for various subcellular compartments or secretion. To fulfill these tasks proper localization of the accessory proteins within the different sub-compartments of the GA is crucial. Here we investigate structural determinants mediating transition of the two glycosyltransferases β-1,4- galactosyltransferase 1 (gal-T1) and the α-1,3-fucosyltransferase 6 (fuc-T6) from the trans-Golgi cisterna to the trans-Golgi network (TGN). Upon treatment with the ionophore monensin both glycosyltransferases are found in TGN-derived swollen vesicles, as determined by confocal fluorescence microscopy and density gradient fractionation. Both enzymes carry a signal consisting of the amino acids E5P6 in gal-T1 and D2P3 in fuc-T6 necessary for the transition of these glycosyltransferases from the trans-Golgi cisterna to the TGN, but not for their steady state localization in the trans-Golgi cisterna. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 30 July 2008; received after revision 17 September 2008; accepted 29 September 2008  相似文献   

10.
The participation of protein kinase C (PKC) in the regeneration of tentacles ofHydra vulgaris was studied. Regeneration was induced by 1,2-sn-dioctanoyl-glycerol (diC8) and the novel diterpenoidic diacylglycerol verrucosin B (VB), a potent PKC activator extracted from marine sources. VB substantially increasedHydra average tentacle number (ATN) at concentrations 10,000 times lower than those needed for diC8 to exert an analogous effect. When both synthetic and natural VB analogues were tested, the structure/activity relationship found inHydra tentacle regeneration was identical to that known for DAG-induced activation of PKC in vitro. VB-induced increase of ATN was strongly counteracted by the PKC inhibitors sphingosine and A3, but was not synergic with a tenfold increase of extracellular Ca2+ concentration or with an increase of intracellular Ca2+ concentration obtained either with the ionophore A23187 or with thapsigargin. This suggested the involvement of a non-Ca2+-dependent PKC in VB-triggeredHydra tentacle regeneration. The involvement of phospholipase A2 (PLA2) activation inHydra regenerative processes was studied using the novel site-specific inhibitor of the enzyme, oleyloxyethylphosphorylcholine (OOPC), which brought about a striking inhibition of ATN in the low molar range. This effect was reversed by arachidonic acid (AA), while an enhancement of ATN was also observed with an inhibitor of AA uptake from membrane phospholipids, thus suggesting that PLA2-catalysed liberation of AA is involved inHydra tentacle regeneration. OOPC also blocked verrucosin B-induced PKC-mediated enhancement of ATN, thus suggesting that this effect is also mediated by PLA2 activation. ATN was increased also by compound 48/80, a direct activator of pertussis toxin-sensitive GTP-binding proteins, and this effect was counteracted by pertussis toxin pretreatment. None of the known AA cascade inhibitors exhibited an effect on ATN comparable to that exerted by OOPC, but, surprisingly, the cycloxygenase inhibitor indomethacin strongly enhanced ATN, thus suggesting that prostanoids might effect a negative control onHydra regenerative processes. This represents the first attempt so far reported to study the implication of more than one biochemical pathway as a signalling event in the hydroid regenerative processes.  相似文献   

11.
Incubation of molting glands from the crayfishProcambarus clarkii (Y-organ) and the silkwormBombyx mori (prothoracic gland) with 23,24-[2H4]-2-deoxyecdysone resulted in the production of deutero-ecdysone; this biotransformation was inhibited in the presence of xanthurenic acid. When the experiments were performed under an18O2 atmosphere, the18O atom was introduced into ecdysone, as confirmed by mass spectrometry. We therefore suggest that xanthurenic acid inhibits P-450-dependent hydroxylation of 2-deoxyecdysone. However, deutero-2-deoxyecdysone was not converted to 3-dehydroecdysone when using Y-organs in vitro, although it is a major product. We therefore conclude that the biosynthetic pathway of ecdysteroids inP. clarkii branches at an early step.  相似文献   

12.
Summary Glutamine synthetase I was purified fromRhizobium sp. UMKL 20 following polyethylene glycol precipitation. The enzyme had a subunit molecular weight of 58 kd. Apparent Km values for ammonia and glutamate were 5.6 and 15.2 mM, respectively. Glutamine synthetase I activity was inhibited by several end products of glutamine metabolism. The purified enzyme was highly adenylylated (E n =8.5).Acknowledgment. I would like to thank Mr J. C. Lai for technical assistance. This work was carried out with the support of Vote F 153/79 from the University of Malaya.  相似文献   

13.
The influence of mycorrhizal colonization withGlomus mosseae on parameters of N2 fixation and plant growth was studied in pot experiments with pea plants (Pisum sativum L.) infected withRhizobium leguminosarum and supplied with varied levels of phosphorus (P) and nitrogen (N). Reduced light intensities were used to evaluate the dependence of the microsymbionts on assimilate supply. In plants grown with low P supply, mycorrhization increased the concentration of P in shoots, and thus N2 fixation. Reduced light intensity significantly depressed mycorrhizal colonization and nodule growth in low-P plants. When P supply did not limit plant growth and N2 fixation, however, the percentage of mycorrhizal colonization was reduced due to the higher P status, and the microsymbionts were not impaired by low light intensities. To maximize carbohydrate supply, another experiment was carried out at high light intensity of 900 mol m–2s–1 and with non-limiting P supply. Nitrogen fertilization, given as starter N, enhanced plant growth, but delayed nodule formation. Towards flowering, nodulation rapidly increased, but less so inGlomus inoculated plants. After 28 days mycorrhizal plants were lower in shoot dry weight, nodule dry weight and nitrogenase activity. The results suggest that under many, but not all, environmental conditions the host plant is able to restrict mycorrhizal colonization and, thus, to prevent impairment ofRhizobium symbiosis.deceased in May 1994  相似文献   

14.
Defensive secretions (allomones) from first-instar nymphs of stink bugs in the subfamily Pentatominae contain (E)-4-oxo-2-decenal as a major constituent, whereas this compound is absent from later instars. In contrast, first instars ofEdessa meditabunda (Edessinae) produce allomones like those of later instars. The C6 and C8 (E)-4-oxo-2-alkenals are common, characteristic exocrine compounds of nymphal and adult Heteroptera, but (E)-4-oxo-2-decenal is previously unknown as a major natural product for which a biological role has yet to be established.  相似文献   

15.
The karyotype of a lungless salamander,Onychodactylus fischeri, from Korea was analyzed and compared with that of the Japanese congeneric species,O. japonicus. In both species the diploid karyotype consists of78 chromosomes, including 6 pairs of large chromosomes, 6 pairs of medium-sized ones, and the remaining 27 pairs of microchromosomes. The chromosome number ofO. fischeri, 2n=78, is, like that ofO. japonicus, the largest so far reported in the order Urodela. C-banding showed that constitutive heterochromatin inO. fischeri was mainly in the centromeric regions and near the secondary constrictions of the large chromosomes. AgNO3-bands were located in the secondary constrictions associated with C-band heterochromatin.  相似文献   

16.
Unique evolution of Bivalvia arginine kinases   总被引:1,自引:0,他引:1  
The clams Pseudocardium, Solen, Corbicula and Ensis possess a unique form of arginine kinase (AK) with a molecular mass of 80 kDa and an unusual two-domain structure, a result of gene duplication and subsequent fusion. These AKs also lack two functionally important amino acid residues, Asp62 and Arg193, which are strictly conserved in other 40-kDa AKs and are assumed to be key residues for stabilizing the substrate-bound structure. However, these AKs show higher enzyme activity. The cDNA-derived amino acid sequences of 40-kDa AKs from the blood clam Scapharca broughtonii and the oyster Crassostrea gigas were determined. While Asp62 and Arg193 are conserved in Scapharca AK, these two key residues are replaced by Asn and Lys, respectively, in Crassostrea AK. The native enzyme from Crassostrea and both of the recombinant enzymes show an enzyme activity similar to that of two-domain clam AKs and at least twofold higher than that of other molluskan AKs. Although the replacement of Asp62 or Arg193 by Gly in normal AK causes a considerable decrease in Vmax (6–15% of wild-type enzyme) and a two- to threefold increase in Km for arginine, the same replacement in Scapharca AK had no pronounced effect on enzyme activity. Together with the observation that bivalve AKs are phylogenetically distinct from other molluskan AKs, these results suggest that bivalve AKs have undergone a unique molecular evolution; the characteristic stabilizing function of residues 62 and 193 has been lost and, consequently, the enzyme shows higher activity than normal.Received 14 October 2003; accepted 1 November 2003  相似文献   

17.
A number of neuropeptides were isolated from the ganglia and muscles of molluscs, and their actions were examined. Diverse neuropeptides, in addition to several classical neurotransmitters, were suggested to be involved in the regulation of the anterior byssus retractor muscle ofMytilus. A wide structural variety of members of theMytilus inhibitory peptide family was observed in each of the generaMytilus, Achatina andHelix. Gly-Trp-NH2, the C-terminal dipeptide fragment of the neuropeptide AGPWamide, showed a more potent action than the parent peptide in all of the muscles examined. Peptides related to some molluscan neuropeptides were found to be distributed interphyletically. Some neuropeptides containing ad-amino acid residue were found inAchatina andMytilus. These aspects of molluscan neuropeptides are thought not to be exceptional.  相似文献   

18.
Our understanding of flippase-mediated lipid translocation and membrane vesiculation, and the involvement of P-type ATPases in these processes is just beginning to emerge. The results obtained so far demonstrate significant complexity within this field and point to major tasks for future research. Most importantly, biochemical characterization of P4-ATPases is required in order to clarify whether these transporters indeed are capable of catalyzing transmembrane phospholipid flipping. The β-subunit of P4-ATPases shows unexpected similarities between the β- and γ-subunits of the Na+/K+-ATPase. It is likely that these proteins provide a similar solution to similar problems, and might have adopted similar structures to accomplish these tasks. No P4-ATPases have been identified in the endoplasmic reticulum and it remains an intriguing possibility that, in this compartment, P5A-ATPases are functional homologues of P4-ATPases. Received 19 June 2008; received after revision 31 July 2008; accepted 15 August 2008  相似文献   

19.
A large variety of snake toxins evolved from PLA2 digestive enzymes through a process of ‘accelerated evolution’. These toxins have different tissue targets, membrane receptors and mechanisms of alteration of the cell plasma membrane. Two of the most commonly induced effects by venom PLA2s are neurotoxicity and myotoxicity. Here, we will discuss how these snake toxins achieve a similar cellular lesion, which is evolutionarily highly conserved, despite the differences listed above. They cause an initial plasma membrane perturbation which promotes a large increase of the cytosolic Ca2+ concentration leading to cell degeneration, following modes that we discuss in detail for muscle cells and for the neuromuscular junction. The different systemic pathophysiological consequences caused by these toxins are not due to different mechanisms of cell toxicity, but to the intrinsic anatomical and physiological properties of the targeted tissues and cells. Received 05 March 2008; received after revision 08 April 2008; accepted 29 April 2008  相似文献   

20.
The 129 mouse strain develops congenital testicular germ cell tumors (TGCTs) at a low frequency. TGCTs in mice resemble the testicular tumors (teratomas) that occur in human infants. The genes that cause these tumors in 129 have not been identified. The defect at the Ter locus increases TGCT incidence such that 94% of 129-Ter/Ter males develop TGCTs. The primary effect of the Ter mutation is progressive loss of primordial germ cells (PGCs) during embryonic development. This results in sterility in adult Ter/Ter mice on all mouse strain backgrounds. However, on the 129 background, Ter causes tumor development in addition to sterility. Therefore, Ter acts as a modifier of 129-derived TGCT susceptibility genes. Ter was identified to be a mutation that inactivates the Dead-end1 (Dnd1) gene. In this perspective, I discuss the possible areas of future investigations to elucidate the mechanism of TGCT development due to Dnd1 inactivation. Received 29 September 2006; received after revision 29 January 2007; accepted 19 February 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号