首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exploration of new genes controlling rice leaf shape is an important foundation for rice functional genomics and plant archi-tecture improvement. In the present study, we identified a rolling leaf mutant from indica variety Yuefeng B, named rl11(t), which exhibited reduced plant height, rolling and narrow leaves. Leaves in rl11(t) mutant showed abnormal number and morphology of veins compared with those in wild type plants. In addition, rl11(t) mutant was less sensitive to the inhibitory effect of auxin than the wild type. Genetic analysis suggested that the mutant was controlled by a single recessive gene. Gene Rl11(t) was initially mapped between SSR markers RM6089 and RM124 on chromosome 4. Thirty-two new STS markers around the Rl11(t) region were developed for fine mapping. A physical map encompassing the Rl11(t) locus was constructed and the target gene was finally delimited to a 31.6 kb window between STS4-25 and STS4-26 on BAC AL606645. This provides useful information for cloning of Rl11(t) gene.  相似文献   

2.
Fine mapping of a semidwarf gene sd-g in indica rice(Oryza sativa L.)   总被引:4,自引:0,他引:4  
The semidwarf gene sd-g which has been usedin indiea rice breeding in southern China is a new one, non-allelic to sd-1. To map sd-g, an F2 population derived fromthe cross between Xinguiaishuangai and 02428 was con-structed. The sd-g was roughly mapped between two mi-crosatellite markers RM440 and RM163, with genetic dis-tances of 0.5 and 2.5 cM, respectively. Then nine new poly-morphic microsatellite markers were developed in this region.The sd-g was further mapped between two microsatellitemarkers SSR5-1 and SSR5-51, with genetic distances of 0.1and 0.3 cM, respectively, while cosegregated with SSR418. ABAC contig was found to span the sd-g locus, the region be-ing delimited to 85 kb. This result was very useful for cloningof the sd-g gene.  相似文献   

3.
Hybrid sterility is a major hindrance to utilizing the heterosis in indica-japonica hybrids. To isolate a gene Sc conferring the hybrid sterility, the locus was mapped using molecular markers and an F2 population derived from a cross between near isogenic lines. A primary linkage analysis showed that Sc was linked closely with 4 markers on chromosome 3, on which the genetic distance between a marker RG227 and Sc was 0.07 cM. Chromosome walking with a rice TAC genomic library was carried out using RG227 as a starting probe, and a contig of ca. 320 kb covering the Sc locus was constructed. Two TAC clones, M45EI4 and M90J01 that might cover the Sc locus, were partially sequenced. By searching the rice sequence databases with sequences of the TACs and RG227 a japonica rice BAC sequence, OSJNBb0078P24 was identified. By comparing the TAC and BAC sequences, six new PCR-based markers were developed. With these markers the Sc locus was further mapped to a region of 46 kb. The results suggest that the BAC OSJNBb0078P24 and TAC M45EI4 contain the Sc gene. Six ORFs were predicted in the focused 46-kb region.  相似文献   

4.
Leaf senescence as an active process is essential for plant survival and reproduction. However, premature senility is harmful to agricultural production. In this study, a rice mutant, named as psl3 (presescing leaf 3) isolated from EMS-treated Jinhui 10, displays obvious premature senility features both in morphological and physiological level. Genetic analysis showed that mutant trait was controlled by a single dominant gene (PSL3), which was located on rice chromosome 7 between SSR marker c7sr1 and InDel marker ID10 with an interval of 53.5 kb. The result may be useful for the isolation of the PSL3 gene.  相似文献   

5.
The cry1Ah gene was one of novel insecticidal genes cloned from Bacillus thuringiensis isolate BT8. Two plant expression vectors containing cry1Ah gene were constructed. The first intron of maize ubiqutinl gene was inserted between the maize Ubiquitin promoter and cry1Ah gene in one of the plant expressing vectors (pUUOAH). The two vectors were introduced into maize immature embryonic calli by microprojectile bombardment, and the reproductively plants were acquired. PCR and Southern blot analysis showed that foreign genes had been integrated into maize genome and inherited to the next generation stably. The ELISA assay to T1 and T2 generation plants showed that the expression of CrylAh protein in the construct containing the ubil intron (pUUOAH) was 20% higher than that of the intronless construct (pUOAH). Bioassay results showed that the transgenic maize harboring cry1Ah gene had high resistance to the Asian corn borers and the insecticidal activity of the transgenic maize containing the ubil intron was higher than that of the intronless construct. These results indicated that the maize ubil intron can enhance the expression of the Bt cry1Ah gene in transgenic maize efficiently  相似文献   

6.
Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal architecture. In this study, we report mapping and characterization of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a “lazy“ phenotype at the mature stage. Genetic analysis indicates that this tillerspreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.  相似文献   

7.
Silicon is essential for optimal growth of rice (Oryza sativa L.). This study was conducted to fine map qHUS6.1, a quantitative trait locus (QTL) for rice hull silicon content previously located in the interval RM510–RM19417 on the short arm of chromosome 6, and to analyze the effect of this QTL on the silicon content in different organs of rice. Selfed progenies of a residual heterozygous line of rice were detected using 13 microsatellite markers in the vicinity of qHUS6.1. Three plants with overlapping heterozygous segments were selected. Three sets of near isogenic lines (NILs) were developed from the selfed progenies of the 3 plants. They were grown in a paddy field and the silicon contents of the hull, flag leaf, and stem were measured at maturity. Based on analyses of the phenotypic distribution and variance among different genotypic groups in the same NIL set, a significant genotypic effect was shown in the NIL set that was heterogenous in the interval RM19410–RM5815, whereas a significant effect was not found in the remaining 2 NIL sets that were heterogenous in either of the intervals RM4923–RM19410 or RM19417–RM204. On comparison among the physical positions of the 3 heterogenous segments, qHUS6.1 was delimited to a 64.2-kb region flanked by RM19410 and RM19417 that contains nine annotated genes according to the genome sequence of Nipponbare. This QTL showed strong effects on all of the three traits tested, and the enhancing alleles were always derived from the paternal line Milyang 46. The present study will facilitate the cloning of qHUS6.1 and the exploration of new genetic resources for QTL fine mapping.  相似文献   

8.
9.
Lepus yarkandensis, an endemic hare species in the Tarim Basin of China, has been suffering from habitat fragmentation due to desert expansion. To evaluate the effect of habitat fragmentation on its genetic diversity, the genetic diversity based on male-specific SRY gene marker is examined. A relatively low level of SRY genetic diversity is found compared to previous studies with mtDNA data, possibly due to the low SRY mutation rate and positive selection. Furthermore, one haplotype exists in eight populations along the Tarim River but not in many other relatively isolated populations, suggesting that habitat fragmentation may affect population divergence. Despite this, our pairwise Fst analysis shows no significant differentiation among populations, and this may be mainly caused by positive selection on the SRY gene in that 88 percent of individuals share the same haplotype. Finally, the phylogenetic analysis shows deep differentiation between L. yarkandensis and other two hare species (L. capensis and L. europaeus).  相似文献   

10.
In this study, Cry ⅠA(b) gene was successfully transferred into the biocontrol fungus Trichoderma harzianum with an efficiency of 60-180 transformants per 10^6 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the presence of Cry ⅠA(b) gene by Southern blot. Most transformants contained a single T-DNA copy. RT-PCR analysis showed that the Cry ⅠA(b) gene was transcribed. Antifungal activities and insecticidal activities of the transformants were examined. There was no obvious difference in antifungal activities between the transformants and their wild strains. The modified mortalities of the transformants T1 and T2 were 69.57% and 91.30%, respectively. The tranformation system mediated by A. tumefaciens proved to be a powerful tool for the filamentous fungi transformation and functional genomic study with its high transformation frequency, simplicity of T-DNA integration, and genetic stability of transformants.  相似文献   

11.
<Emphasis Type="Italic">ftsZ</Emphasis> gene and plastid division   总被引:2,自引:0,他引:2  
As the important cellular organelles in plants, plas-tids comprise one of the primary features that distinguish plant cells from those of other eukaryotes. Seen from the origin, plastids derive from endosymbiotic photosynthetic bacteria. Subsequently, plastids have evolved to become essential components for plant cell function. Besides the important role of chloroplasts in photosynthesis, some water-soluble proteins that involved in biosynthesis of starch, fatty acids, amino acids, nucleic aci…  相似文献   

12.
A full-length cDNA clone corresponding to a putative phosphatidylinositol-specific phospholipase C(PIPLC) was isolated from Arabidopsis thaliana by screening a cDNA library and using RT-PCR strategy.The cDNA,designated AtPLC6,encodes a putative polypeptide of 578 amino acid residues with a calculated molecular mass of 66251.84 D and a pI of 7.24. The sequence analysis indicates that the polypeptide contains X, Y, EF-hand and C2 domains.The overall structure of putative AtPLC6 protein, like other plant PI-PLCs,is most similar to that of mammalian PLCδ The recombinant AtPLC6 protein expressed in E. coil was able to hydrolyze phosphatidylinositol 4,5-biophosphate (PIP2) to generate inositol 1,4,5-trisphate (IP3) and 1,2-diacylglycerol (DAG).The protein hydrolyzes PIP2 in a Ca^2 -dependent manner and the optimum concentration of Ca^2 is 10μmol/L.These results suggested that AtPLC6 gene encodes a genuine PIPLC.Northern blot analysis showed that the AtPLC6 gene is expressed at low level in all examined tissues, such as roots,stems,leaves,flowers,siliques and seedlings under normal growth conditions.The gene is strongly induced under low temperature and weakly induced under various stresses,such as ABA, high-salt stress and heat. These results suggested that AtPLC6 might be involved in the signal-transduction pathways of cold responses of the plants.  相似文献   

13.
14.
Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield.  相似文献   

15.
The GbKTN1 gene was isolated from 10 DPA fiber cells of Gossypium barbadense using 5′RACE/3′RACE.Full-length cDNA of this gene is 2006 bp, including a 113 bp of 5′untranslated region, a 1563 bp of an open reading frame(ORF), and a 327 bp of 3′untranslated region (excluding the stop codon TAA). The ORF of GbKTN1 encodes a 521-amino acid protein with a predicted size of 55 kD. Near C-terminal of the deduced protein there is a putative ATP binding site between amino acid residues from 233 to 414. Southern blot analysis indicated that the GbKTN1 was a single copy gene in G barbadense. Combining semi-quantitative RT-PCR with Southern blot hybridization revealed that GbKTN1 expressed in all the organs detected such as roots, stems, leaves and fibers. However, the mRNA of GbKTN1 was the most abundant in fiber cells, while it was the lowest in leaves. The GbKTN1 cDNA was transformed into S. pombe to verify its function on cell elongation. Results showed that most yeast cells over expressing GbKTN1 gene were elongated dramatically with an average length increase of 2.18 times than that of the non-induced cells. Even the morphology of some yeast cells appeared irregularly. To the best of our knowledge this is the first evidence that KTN1 is correlated with cell elongation in vivo.  相似文献   

16.
Adaptation is one of the most fundamental issues in the studies of organismal evolution. Pancreatic ribonuclease is a very impor- tant digestive enzyme and secreted by the pancreas. Numerous studies have suggested that RNASE1 gene duplication is closely related to the functional adaptation of the digestive system in the intestinal fermentation herbivores. RNASE1 gene thus becomes one of the most important candidate genetic markers to study the molecular mechanism of adaptation of organisms to the feeding ha...  相似文献   

17.
The biologically active cis-cinnamic acid (cis-CA) has been perceived as a synthetic plant growth regulator for decades,However,in the present study,we found that cis-CA actually exists as a naturally occurring compound in a Brassica plant,This natural growth-regulating substance presents in both the sunlight-irradiated leaf tissue and the non-irradiated root tissue ,The concentrations of cis-CA in both tissues are comparable to the bilogi-cally effective lvels of those major plant hormones,the presence of cis-CA in root tissue suggests that it may be produced through both light-dependent and -independent path-ways or it can be transproted from a plant organ to another.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号