首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
建立了两塔径向流变压吸附制氧实验装置,研究了径向流吸附器的气体流动型式、外流道宽度和流道结构对制氧效果的影响。结果表明:对于变压吸附制氧,径向流吸附器采用向心流动最为合适;在实验条件下,外流道宽度减小到13 mm时,氧和氮分离效果最佳;与Z型流道相比,Π型流道结构改善分子筛的利用率,产氧效果最好。  相似文献   

2.
用高性能制氧分子筛变压吸附   总被引:1,自引:0,他引:1  
对沸石分子筛进行离子交换改性,同时严格控制成型活化条件,开发出变压吸附空分用系列高性能制氧分子筛。测试其氮、氧静态吸附等温线以及吸附热数据,并对数据结果进行分析。这为进一步开发和优化变压吸附制氧过程提供了良好的基础。  相似文献   

3.
测试了微型制氧吸附剂的平衡吸附特性,在此基础上选出适合快速真空变压吸附制氧的吸附剂. 针对传统的单塔两步快速变压吸附制氧含量低问题,提出了提高产品气氧含量的单塔快速变压吸附制氧的排放气和原料气组合充压流程,并对该流程进行实验研究. 结果表明:在单塔快速真空变压吸附制氧过程中,采用排放气和原料气组合充压流程可以有效提高产品气氧含量. 充压前排放气的压力和氧含量是影响产品气氧含量的关键参数,采取合适的排放气压力和较高氧含量的排放气可获得更高的产品气氧含量. 在吸附和解吸压力分别为240 kPa和60 kPa时,采用排放气和原料气组合充压的快速真空变压吸附流程可获得氧体积分数90%的产品气,其产氧率为325. 08 L·h-1·kg-1 .  相似文献   

4.
应用动态柱穿透法测定的空气中氮-氧吸附平衡数据模拟两床真空变压吸附(VSA)空分制氧中等温与非等温过程;在VSA过程模拟中探讨了吸附压力、进料流量和冲洗比等过程操作条件以及吸附过程中温度的变化对产品气氧的纯度、收率和产率的影响,为VSA空分制氧过程提供一定的设计依据。  相似文献   

5.
由浙江大学材料系承担的省科委项目“分子筛变压吸附法制备富氧”,经过两年多的努力已研究成功。该装置是在常温下利用变压吸附技术对空气中的氧、氮进行分离,达到输出富氧的目的。与传统的低温空气分离相比,变压吸附法制备富氧具有投资省、设备占地面积小、工艺流程简单、操作维修方便、易于实现自动控制等优点。  相似文献   

6.
为了提高PSA制氧设备的性能,设计了一种Ω形阶梯径向流吸附床.以Fluent 16.0为计算平台,采用数值模拟的方法研究了该吸附床的流场、浓度场、制氧特性和床层穿透时间等参数的变化规律,并与传统的Π形径向流吸附床进行了比较.结果表明:在同样条件下,与Π形床相比,Ω形阶梯径向流吸附床的穿透时间显著延长,流动不均匀区显著缩小;Ω形阶梯径向流吸附床成品气O2的摩尔分数可达91.8%,Π形床仅为87.1%.在吸附阶段,两种吸附床内O2的高摩尔分数区外形存在明显差异,Ω形阶梯径向流吸附床内O2的高摩尔分数区以近圆杯状向前推进,Π形床则以长圆锥状向前推进.  相似文献   

7.
全面介绍了变压吸附制氮的原理以及制氮工艺流程,而且根据实际生产中制氮机运行情况,分析低产量原因,给出了检查方案。通过检修表和实际分析可以了解制氮机出现各种问题后的检查和检修方法,可以短时间内排出故障,使设备恢复运行,进而快速的投入生产,减少因设备和备件问题产生的经济损失。  相似文献   

8.
就变压吸附空气分离制氧过程,对接近真实情况的非线性、非等温模型构成的偏微分方程组,采用正交配置进行空间离散化和三阶半隐式龙体库塔法的数值计算方法,研究了变压吸附过程中床层内温度和浓度的动态行为,考察了清洗比、吸附压力、进气流量、吸附时间等操作参数对过程性能的影响,为过程优化设计建立基础。  相似文献   

9.
微型PSA制氧技术试验研究   总被引:10,自引:3,他引:7  
研究了微型变压吸附(PSA)制氧时空气量、分子筛、吸附时间、吸附塔高径比等因素对产品气浓度和流量的影响,产氧量与空气量之比约为15~18,氧气收得率约为25%~30%,分子筛品种对制氧效率有重要影响,分子筛量与产氧量基本成线性关系,对于给定的条件,存在最佳的吸附时间,高径比对产品气浓度的影响与产氧量有关,浓度随高径比增加而增加。  相似文献   

10.
微型变压吸附分离空气制氧均压过程   总被引:1,自引:0,他引:1  
通过切换压力、均压时间、高径比以及吸附塔进出口压力研究了微型变压吸附制氧均压过程.实验结果表明:在实验条件下,氧气纯度随切换压力的增加先增加后减小,且不同的均压时间对应的最佳切换压力相同;氧气纯度随均压时间的增加也是先增加后减小,存在一个最佳均压时间,此最佳值由吸附塔的结构决定;高径比大的吸附塔对应的最佳均压时间比高径比小的吸附塔对应的最佳均压时间长;均压过程中,进气吸附塔内的压力增加迅速,均压结束后,吸附塔内压力变化缓慢,且进出口压力曲线基本保持平行.  相似文献   

11.
SARS患者专用微型制氧机工艺参数实验研究   总被引:9,自引:4,他引:9  
为了开发用于SARS病人的微型变压吸附制氧机,实验研究了吸附时间、反吹比、产品气量、吸附塔高径比以及吸附剂种类等工艺参数对微型变压吸附分离空气制氧装置的产品纯度和回收率的影响.实验结果表明:在变压吸附微型化条件下,最佳的吸附时间为12 s和反吹比为0.5;随着产品气流量的增加,产品气纯度下降,而回收率升高,在所要求的纯度下,回收率能达到19%;吸附剂的种类对变压吸附制氧过程有重要的影响;在微型化条件下,合适吸附塔的高径比为3.7~4.0之间.  相似文献   

12.
真空变压吸附过程捕获烟道气中CO_2的数值模拟   总被引:1,自引:0,他引:1  
真空变压吸附(VPSA)过程的影响因素很多,且为一组复杂的非线性关系。通过计算来了解各变量对过程分离性能的影响有着实验无法替代的作用。采用沥青基活性碳小球为吸附剂,建立了VPSA过程及其能耗计算的模型,模拟研究了P/F、真空压力和CO2进料浓度对VPSA过程分离性能及其总能耗的影响。研究结果表明:P/F存在一个最佳值,...  相似文献   

13.
快速(真空)变压吸附循环周期较短,床层压力周期性变化快,使吸附床内流动及传热传质特性变化较大,本文研究吸附及解吸压力对快速变压吸附制氧床内速度及循环性能的影响。快速变压吸附( rapid pressure swing adsorption, RPSA)循环中原料气充压阶段气流速度远大于顺流的气体流速极限值,快速真空变压吸附( rapid vacuum pressure swing adsorption, RVPSA)循环中原料气充压阶段气流速度略大于顺流的气体流速极限值,而RPSA循环和RVPSA循环中放空降压阶段气流速度均较大。在所研究的吸附和解吸压力范围内,RPSA循环和RVPSA循环中气体温度在循环周期内变化均约为10℃,而RVPSA循环中气体温度在循环周期内温度梯度更大。 RPSA循环中吸附压力越高,氧气回收率越高,床层因子越小;而RVP-SA循环中解吸压力越低,氧气回收率越高,床层因子越小。  相似文献   

14.
数值模拟了吸附时间、吸附压力、进气量、吸附床高度等工艺参数对微型氧氮分离过程的影响,分析了氧含量沿吸附床的演变过程.结果表明:微型氧氮分离过程为一种短周期的变压吸附循环;吸附压力越高,吸附阶段结束时氧气浓度波锋面穿透吸附床的距离越长;进气量越大,要求吸附床高度越大;吸附床长度缩短会导致吸附阶段氧气浓度锋面穿透吸附床;从开始到循环达到稳定状态需要大约15个循环;要想获得较高纯度的产品气,必须保证氧气浓度波锋面前沿不移出吸附床;传质阻力对过程的影响非常大,不能近似认为是瞬时平衡过程.  相似文献   

15.
液氮温度下用分子筛13X在自行设计的单塔变压吸附装置上进行氢氘同位素气体的分离研究,考察了流量、压力与吸附床长度对分离效果的影响,在气体总压0.40 MPa、总流量63.86 cm3/min与吸附床长度1.0 m时氢氘分离因子可达到1.27.结合平衡吸附和动态分离之间的差异,表明吸附法能够有效分离氢同位素气体的机理是基于动力学效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号