首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte, the gene encoding NTE. Nte(-/-) mice die after embryonic day 8, and Nte(+/-) mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte(+/-) and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.  相似文献   

4.
Prader-Willi syndrome (PWS) is associated with paternally derived chromosomal deletions in region 15q11-13 or with maternal disomy for chromosome 15. Therefore, loss of the expressed paternal alleles of maternally imprinted genes must be responsible for the PWS phenotype. We have mapped the gene encoding the small nuclear RNA associated polypeptide SmN (SNRPN) to human chromosome 15q12 and a processed pseudogene SNRPNP1 to chromosome region 6pter-p21. Furthermore, SNRPN was mapped to the minimal deletion interval that is critical for PWS. The fact that the mouse Snrpn gene is maternally imprinted in brain suggests that loss of the paternally derived SNRPN allele may be involved in the PWS phenotype.  相似文献   

5.
The genetic analysis of congenital skull malformations provides insight into normal mechanisms of calvarial osteogenesis. Enlarged parietal foramina (PFM) are oval defects of the parietal bones caused by deficient ossification around the parietal notch, which is normally obliterated during the fifth fetal month. PFM are usually asymptomatic, but may be associated with headache, scalp defects and structural or vascular malformations of the brain. Inheritance is frequently autosomal dominant, but no causative mutations have been identified in non-syndromic cases. We describe here heterozygous mutations of the homeobox gene MSX2 (located on 5q34-q35) in three unrelated families with PFM. One is a deletion of approximately 206 kb including the entire gene and the others are intragenic mutations of the DNA-binding homeodomain (RK159-160del and R172H) that predict disruption of critical intramolecular and DNA contacts. Mouse Msx2 protein with either of the homeodomain mutations exhibited more than 85% reduction in binding to an optimal Msx2 DNA-binding site. Our findings contrast with the only described MSX2 homeodomain mutation (P148H), associated with craniosynostosis, that binds with enhanced affinity to the same target. This demonstrates that MSX2 dosage is critical for human skull development and suggests that PFM and craniosynostosis result, respectively, from loss and gain of activity in an MSX2-mediated pathway of calvarial osteogenic differentiation.  相似文献   

6.
7.
The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.  相似文献   

8.
Rieger syndrome is an autosomal dominant disorder of morphogenesis in which previous cytogenetic arrangements have suggested chromosome 4 as a candidate chromosome. Using a group of highly polymorphic short tandem repeat polymorphisms (STRP), including a new tetranucleotide repeat for epidermal growth factor (EGF), significant linkage of Rieger syndrome to 4q markers has been identified. Tight linkage to EGF supports its role as a candidate gene, although a recombinant in an unaffected individual has been identified. This study demonstrates the utility of using polymorphic STRP markers when only a limited number of small families are available for study.  相似文献   

9.
Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. The presence of the HDAC2 frameshift mutation causes a loss of HDAC2 protein expression and enzymatic activity and renders these cells more resistant to the usual antiproliferative and proapoptotic effects of histone deacetylase inhibitors. As such drugs may serve as therapeutic agents for cancer, our findings support the use of HDAC2 mutational status in future pharmacogenetic treatment of these individuals.  相似文献   

10.
Silver-Russell syndrome (SRS, OMIM 180860) is a congenital disorder characterized by severe intrauterine and postnatal growth retardation, dysmorphic facial features and body asymmetry. SRS is genetically heterogenous with maternal uniparental disomy with respect to chromosome 7 occurring in approximately 10% of affected individuals. Given the crucial role of the 11p15 imprinted region in the control of fetal growth, we hypothesized that dysregulation of genes at 11p15 might be involved in syndromic intrauterine growth retardation. We identified an epimutation (demethylation) in the telomeric imprinting center region ICR1 of the 11p15 region in several individuals with clinically typical SRS. This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2. These findings provide new insight into the pathogenesis of SRS and strongly suggest that the 11p15 imprinted region, in addition to those of 7p11.2-p13 and 7q31-qter, is involved in SRS.  相似文献   

11.
The p53 protein integrates multiple upstream signals and functions as a tumor suppressor by activating distinct downstream genes. At the cellular level, p53 induces apoptosis, cell cycle arrest and senescence. A rare mutant form of p53 with the amino acid substitution R175P, found in human tumors, is completely defective in initiating apoptosis but still induces cell cycle arrest. To decipher the functional importance of these pathways in spontaneous tumorigenesis, we used homologous recombination to generate mice with mutant p53-R172P (the mouse equivalent of R175P in humans). Mice inheriting two copies of this mutation (Trp53(515C/515C)) escape the early onset of thymic lymphomas that characterize Trp53-null mice. At 7 months of age, 90% of Trp53-null mice had died, but 85% of Trp53(515C/515C) mice were alive and tumor-free, indicating that p53-dependent apoptosis was not required for suppression of early onset of spontaneous tumors. The lymphomas and sarcomas that eventually developed in Trp53(515C/515C) mice retained a diploid chromosome number, in sharp contrast to aneuploidy observed in tumors and cells from Trp53-null mice. The ability of mutant p53-R172P to induce a partial cell cycle arrest and retain chromosome stability are crucial for suppression of early onset tumorigenesis.  相似文献   

12.
Pulmonary adenoma susceptibility 1 (Pas1) is the major mouse lung cancer susceptibility locus on chromosome 6 (ref. 1). Kras2 is a common target of somatic mutation in chemically induced mouse lung tumors and is a candidate Pas1 gene. M. spretus mice (SPRET/Ei) carry a Pas1 resistance haplotype for chemically induced lung tumors. We demonstrate that the SPRET/Ei Pas1 allele is switched from resistance to susceptibility by fixation of the parental origin of the mutant Kras2 allele. This switch correlates with low expression of endogenous Kras2 in SPRET/Ei. We propose that the Pas1 modifier effect is due to Kras2, and that a sensitive balance between the expression levels of wild-type and mutant alleles determines lung tumor susceptibility. These data demonstrate that cancer predisposition should also be considered in the context of somatic events and could have major implications for the design of human association studies to identify cancer susceptibility genes.  相似文献   

13.
14.
15.
Major advances in the identification of genes implicated in idiopathic epilepsy have been made. Generalized epilepsy with febrile seizures plus (GEFS+), benign familial neonatal convulsions and nocturnal frontal lobe epilepsy, three autosomal dominant idiopathic epilepsies, result from mutations affecting voltage-gated sodium and potassium channels, and nicotinic acetylcholine receptors, respectively. Disruption of GABAergic neurotransmission mediated by gamma-aminobutyric acid (GABA) has been implicated in epilepsy for many decades. We now report a K289M mutation in the GABA(A) receptor gamma2-subunit gene (GABRG2) that segregates in a family with a phenotype closely related to GEFS+ (ref. 8), an autosomal dominant disorder associating febrile seizures and generalized epilepsy previously linked to mutations in sodium channel genes. The K289M mutation affects a highly conserved residue located in the extracellular loop between transmembrane segments M2 and M3. Analysis of the mutated and wild-type alleles in Xenopus laevis oocytes confirmed the predicted effect of the mutation, a decrease in the amplitude of GABA-activated currents. We thus provide the first genetic evidence that a GABA(A) receptor is directly involved in human idiopathic epilepsy.  相似文献   

16.
Huntington disease (HD), an autosomal dominant, progressive neurodegenerative disorder, is caused by an expanded CAG repeat sequence leading to an increase in the number of glutamine residues in the encoded protein. The normal CAG repeat range is 5-36, whereas 38 or more repeats are found in the diseased state; the severity of disease is roughly proportional to the number of CAG repeats. HD shows anticipation, in which subsequent generations display earlier disease onsets due to intergenerational repeat expansion. For longer repeat lengths, somatic instability of the repeat size has been observed both in human cases at autopsy and in transgenic mouse models containing either a genomic fragment of human HD exon 1 (ref. 9) or an expanded repeat inserted into the endogenous mouse gene Hdh (ref. 10). With increasing repeat number, the protein changes conformation and becomes increasingly prone to aggregation, suggesting important functional correlations between repeat length and pathology. Because dinucleotide repeat instability is known to increase when the mismatch repair enzyme MSH2 is missing, we examined instability of the HD CAG repeat by crossing transgenic mice carrying exon 1 of human HD (ref. 16) with Msh2-/- mice. Our results show that Msh2 is required for somatic instability of the CAG repeat.  相似文献   

17.
The overgrowth- and tumor-associated Beckwith-Wiedemann syndrome results from dysregulation of imprinted genes on chromosome 11p15.5. Here we show that inherited microdeletions in the H19 differentially methylated region (DMR) that abolish two CTCF target sites cause this disease. Maternal transmission of the deletions results in hypermethylation of the H19 DMR, biallelic IGF2 expression, H19 silencing and Beckwith-Wiedemann syndrome, indicative of loss of function of the IGF2-H19 imprinting control element.  相似文献   

18.
The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1-3). As Ucp2 is widely expressed in mammalian tissues, uncouples respiration and resides within a region of genetic linkage to obesity, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages, suggesting a role for Ucp2 in immunity or inflammatory responsiveness. We investigated the response to infection with Toxoplasma gondii in Ucp2-/- mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2-/- mice (63% decrease, P<0.04). Macrophages from Ucp2-/- mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.  相似文献   

19.
Perlman syndrome is a congenital overgrowth syndrome inherited in an autosomal recessive manner that is associated with Wilms tumor susceptibility. We mapped a previously unknown susceptibility locus to 2q37.1 and identified germline mutations in DIS3L2, a homolog of the Schizosaccharomyces pombe dis3 gene, in individuals with Perlman syndrome. Yeast dis3 mutant strains have mitotic abnormalities. Yeast Dis3 and its human homologs, DIS3 and DIS3L1, have exoribonuclease activity and bind to the core RNA exosome complex. DIS3L2 has a different intracellular localization and lacks the PIN domain found in DIS3 and DIS3L1; nevertheless, we show that DIS3L2 has exonuclease activity. DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins. DIS3L2 overexpression suppressed the growth of human cancer cell lines, and knockdown enhanced the growth of these cells. We also detected evidence of DIS3L2 mutations in sporadic Wilms tumor. These observations suggest that DIS3L2 has a critical role in RNA metabolism and is essential for the regulation of cell growth and division.  相似文献   

20.
Experiments involving overexpression of Ski have suggested that this gene is involved in neural tube development and muscle differentiation. In agreement with these findings, Ski-/- mice display a cranial neural tube defect that results in exencephaly and a marked reduction in skeletal muscle mass. Here we show that the penetrance and expressivity of the phenotype changes when the null mutation is backcrossed into the C57BL6/J background, with the principal change involving a switch from a neural tube defect to midline facial clefting. Other defects, including depressed nasal bridge, eye abnormalities, skeletal muscle defects and digit abnormalities, show increased penetrance in the C57BL6/J background. These phenotypes are interesting because they resemble some of the features observed in individuals diagnosed with 1p36 deletion syndrome, a disorder caused by monosomy of the short arm of human chromosome 1p (refs. 6-9). These similarities prompted us to re-examine the chromosomal location of human SKI and to determine whether SKI is included in the deletions of 1p36. We found that human SKI is located at distal 1p36.3 and is deleted in all of the individuals tested so far who have this syndrome. Thus, SKI may contribute to some of the phenotypes common in 1p36 deletion syndrome, and particularly to facial clefting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号