共查询到18条相似文献,搜索用时 98 毫秒
1.
软件的中间代码是位于机器语言和高级程序语言之间程序语言,具有容易理解的语义信息和控制结构信息,能真实地反映软件在执行过程中的实际情况.利用中间代码的语义信息来研究恶意软件,可以发现恶意软件的具体行为信息或特点;通过多种方式对比中间代码形成的控制流图整体或局部信息,实现恶意软件的检测.机器学习为软件安全性信息或规则挖掘提供便利,成为一种先进的恶意软件检测方法.本文从中间代码的语义信息和控制结构两方面对多种恶意软件检测技术进行归类与比较,同时对基于机器学习的中间代码处理与应用方法进行了深入分析和探讨. 相似文献
2.
随着电网规模和电网结构的快速发展,电网自动控制技术逐渐完善起来,大参数、大机组、高电压已成为电力系统的建设发展方向。研究作为解决现代化电网经济调度运行监控的一个核心系统的电网智能经济调控一体化系统具有十分重要的意义。 相似文献
3.
智能电网中信息技术的广泛使用为攻击者提供了更多的途径入侵和攻击电力系统,这已成为智能电网安全的最大隐患之一。提出了一种基于异常数据融合的智能电网攻击检测方法,通过入侵检测系统发现信息网络中的异常流量,利用标准化残差方法检测电力系统中的异常量测数据,通过关联信息网络和物理系统的异常报警数据来检测智能电网攻击事件。仿真实验表明该方法可以消除入侵检测与标准化残差检测产生的大量错误报警,显著提高智能电网攻击的检测精度。 相似文献
4.
攻击者为了逃避检测,常利用加壳技术对恶意软件进行加密或压缩,使得安全分析人员以及传统基于静态分析的恶意软件检测方法在恶意软件运行前难以利用反汇编等逆向工具对其进行静态分析。为检测加壳恶意软件,当前主要采用动态分析方法检测加壳恶意软件,然而受限于加壳工具种类和样本规模,以及恶意软件加壳行为带来的混淆噪声,导致传统基于机器学习检测方法存在准确率不足等问题。研究提取并分析加壳恶意软件运行时的系统调用行为特征,识别并筛选出敏感行为,旨在过滤脱壳行为噪声产生的影响;通过对系统调用行为特征加权降维,提升行为特征的有效性;通过对加权降维的行为特征进行聚类分析,最终实现加壳恶意软件未知变种检测和检测模型增量更新。实验结果表明,提出的基于动态行为特征加权聚类的加壳恶意软件未知变种检测方法检测误报率3.9%,相较几种典型机器学习检测方法呈显著降低。 相似文献
5.
为了提高Android恶意软件检测的准确率和效率,提出一种在静态分析技术基础上利用自动编码器(AE)网络和深度信念网络(DBN)结合的Android恶意软件检测方案。首先通过静态分析技术,提取了权限、动作、组件和敏感APIs作为特征信息,其次通过AE对特征数据集进行降维,最后结合DBN进行更深层次的特征抽象学习,并训练DBN来进行恶意代码检测。实验结果证明,提出的方案与DBN,SVM和KNN进行比较,提高了检测效率和准确率,降低了误报率。 相似文献
6.
7.
《西北民族学院学报》2017,(2):9-13
针对基于特征代码的Android恶意软件检测方法难以检测未知恶意程序,且基于行为的检测方法误报率较高的问题,提出了一种基于权限的Android恶意软件检测方法.该方法首先在静态分析的基础上,结合动态行为分析提取权限特征;然后,采用权限特征关联分析方法,挖掘权限特征之间的关联规则;最后,基于朴素贝叶斯分类算法,建立恶意应用检测模型.实验结果表明,与现有方法相比,本文方法建立的恶意应用模型具有较高的检测率和准确率. 相似文献
8.
随着安卓恶意程序的数量的急剧增加,恶意程序检测已成为一个重要的研究课题.然而,目前许多研究表明,恶意程序的检测仍然需要改进,安卓的碎片问题和需要root权限,阻碍了这些方法的广泛使用.现有的杀毒程序依赖于需要实时更新的签名数据库,这无法检测出零日恶意程序.在本文中,我们提取了安卓程序中的特征,进行混合,选择集成算法中的DECORATE算法,并用WEKA工具辅助进行分类恶意程序的检测.该方法最终达到95.8%的检测精度,同时我们在真实的数据集上经过十折交叉验算实验及对比. 相似文献
9.
10.
随着智能手机的广泛使用,手机APP软件数量也日益剧增,产生了很多恶意APP软件,恶意APP软件可能会窃取手机里隐私信息,因此,检测恶意APP已成为一项重要的安全问题;其中Android系统市场占有率很高,恶意APP软件也数不胜数,因此,Android恶意软件的检测成为了研究的重点.鉴于很多APP都具备反编译功能,我们直... 相似文献
11.
为保证恶意代码变种检测模型的时效性,传统基于机器(深度)学习的检测方法通过集成历史数据和新增数据进行重训练更新模型存在训练效率低的问题。笔者提出一种基于神经网络平滑聚合机制的恶意代码增量学习方法,通过设计神经网络模型平滑聚合函数使模型平滑演进,通过添加训练规模因子,避免增量模型因训练规模较小而影响聚合模型的准确性。实验结果表明,对比重训练方法,增量学习方法在提升训练效率的同时,几乎不降低模型的准确性。 相似文献
12.
依托物联网技术的智能家居面临多重信息安全风险,现有智能家居入侵检测方案存在难以处理大量高维度数据、检测率低、误检率高、依赖经验确定网络层数等问题。提出一种融合深度学习与模糊神经网络的多层神经网络入侵检测方法;基于深度学习完成数据特征的学习,将高维数据映射为低维数据;基于网络重构误差训练并优化确定网络深度。仿真测试结果表明,该方案可有效提高对攻击行为的检测准确率和检测效率;针对远程非法访问的检测率可达到94%,对拒绝服务攻击的检测准确率可达96%,对网络中新型攻击的检测率超过60%。 相似文献
13.
随着科技的进步,智能手机进入了一个高速发展的阶段,Android手机则是其中最主要的推动力.不过随着Android手机普及,由系统自身安全机制缺陷所带来的安全威胁也越来越大.所以针对Android恶意软件设计出高效率、高准确性的检测方案是非常有必要的.笔者设计了一种基于网络行为分析技术的Android恶意软件检测方案.该方案一方面通过对软件的网络行为进行分析,能够准确地判断出该软件是否被篡改为恶意软件;另一方面,借助于云安全技术,将主要的检测工作部署在云端服务器上,使检测工作能够更加高效. 相似文献
14.
基于行为特征建立机器学习模型是目前Android恶意代码检测的主要方法,但这类方法的特征集中各行为特征相互独立,而行为特征间的顺序关系是反映恶意行为的重要因素。为了进一步提高检测准确率,提出了一种基于系统行为序列特征的Android恶意代码检测方法。该方法提取了程序运行发生的敏感API调用、文件访问、数据传输等系统活动的行为序列,基于马尔科夫链模型将系统行为序列转换为状态转移序列并生成了状态转移概率矩阵,将状态转移概率矩阵和状态发生频率作为特征集对SAEs模型进行了学习和训练,最后利用训练后的SAEs实现了对Android恶意代码的检测。实验结果证明,提出的方法在准确率、精度、召回率等指标上优于典型的恶意代码检测方法。 相似文献
15.
以太坊是当下最流行的区块链平台之一,目前已部署数千万个智能合约,控制了价值数千亿美元的以太坊加密货币。由智能合约漏洞引起的安全事件层出不穷,资金损失尤为严重。针对当前智能合约漏洞检测率较低、检测性能不足的问题,提出了基于深度学习的智能合约漏洞检测方法。编译以太坊智能合约源码,解析其对应的字节码得到操作码数据流,根据以太坊黄皮书中操作码与16进制数的对应关系构建字典,将操作码数据流转化为用16进制数表示的操作码序列。通过对操作码序列进行分析,设计循环神经网络、长短期记忆神经网络和卷积神经网络-长短期记忆神经网络3种不同的深度学习网络结构进行漏洞检测。在真实环境中采集了47 527个智能合约,针对智能合约6种漏洞的检测,卷积神经网络-长短期记忆神经网络模型的Macro-F1达到了82.1%。大量的实验结果表明,所提出的模型和方法可实现高效的智能合约漏洞检测。 相似文献
16.
智能合约是区块链三大特点之一,也是区块链具有应用价值和灵活性的领域.本质上,智能合约是一段用特定脚本语言实现的代码,不可避免地存在安全漏洞风险.如何及时准确地检查出各种智能合约的漏洞,就成为区块链安全研究的重点和热点.为了检测智能合约漏洞,研究者提出了各种分析方法,包括符号执行、形式化验证和模糊测试等.随着人工智能技术的快速发展,越来越多基于深度学习的方法被提出,并且在多个研究领域取得了很好的效果.目前,针对基于深度学习的智能合约漏洞检测方法并没有被详细地调查和分析.本文首先简要介绍了智能合约的概念以及智能合约漏洞相关的安全事件;然后对基于深度学习的方法中常用的智能合约特征进行分析;同时对智能合约漏洞检测中常用的深度学习模型进行描述.此外,为了进一步推动基于深度学习的智能合约漏洞检测方法的研究,本文将近年来基于深度学习的智能合约漏洞检测方法根据其特征提取形式进行了总结分类,从文本处理、静态分析和图像处理3个角度进行了分析介绍;最后,总结了该领域面临的挑战和未来的研究方向. 相似文献
17.
集成学习是机器学习的重要研究方向之一,SVM集成近年来已经受到国内外很多从事机器学习、统计学习的研究者们的重视,并使得该领域成为了一个相当活跃的研究热点。对近年来SVM集成的研究与应用进行了综述,讨论了SVM集成需要解决的基本问题;讨论分析了构造差异性大的集成成员SVM的方法、有效的集成结论生成方法、SVM集成的典型应用;指出了目前存在的问题、以及几个重要的研究方向。 相似文献
18.
支持向量机(SVM)算法往往由于分类面过分复杂或过学习而导致其泛化能力降低,现有的最近邻(NNSVM)或K近邻(KNNSVM)方法解决了这类样本问题,但算法时间复杂度高,处理海量样本的能力有限。在NNSVM算法的基础上引入了网格概念,提出了GNNSVM算法,该算法先对空间进行分块,然后在空间块内计算样本距离,找出最近邻,并结合分块序列最小优化算法(SMO)进行了算法实现。实验表明,该方法降低了计算复杂度,它在保持分类精度的同时,提高了训练和分类的速度,并具有较强的泛化能力,从而提高了原NNSVM算法的海量数据处理能力。 相似文献