共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
该文研究了一类高阶线性微分方程f (k)+Ak-1 f (k-1)+…+A1 f '+A0 f=F(z)解的增长性,其中A0,A1,…,Ak-1,F(z)是整函数,并且A0、A1是另一个2阶线性方程的非平凡解. 推广了龙见仁等得到的结果. 相似文献
3.
研究高阶微分方程f^(k) (A1e^az D1)f’ (A0e^bz D0)f=0的解的增长性,其中Ai,Di(j=0,1)或为整函数,或为亚纯函数,且其级都小于1,推广了已有的结果。 相似文献
4.
利用 Nevanlinna 的基本理论和方法,研究了齐次线性微分方程() f k+A f k k??11++=及非齐次Af 0线性微分方程解的增长性.在假设存在某个(1 A s s k ?≤≤1)具有有限亏值的有限级整函数的情况下,证明了齐次线性微分方程的任一非零解均为无穷级,非齐次方程除1个例外解外,其它的非零解也均为无穷级 相似文献
5.
金瑾 《华中师范大学学报(自然科学版)》2013,47(1):4-7
研究了高阶齐次线性微分方程f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z)ep0(z)f=0和f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)+D0(z))f=0解的增长性问题,其中,pj(z)=ajzn+bj,1zn-1+…+bj,n,Aj(z)和Dj(z)是有限级整函数.针对pj(z)中aj(j=0,1,…,k-1)的幅角主值相等的情形,得到了σ2(f)=n. 相似文献
6.
设A1(z)是方程f″+P(z)f=0的非零解,其中P(z)是n次多项式,Aj(z)≠0(j=2,3…,k-1)是整函数,A0(z)是一个超越整函数且满足ρ(Aj)<ρ(A0)≤12,j=2,3…,k-1,那么方程f(k)+Ak-1(z)f(k-1)+…+A1(z)f'+A0(z)f=0的每一个非零解都是无穷级。 相似文献
7.
研究二阶微分方程f〃+e-znf'+(A1ep(z)+A2eQ(z))f=0解的增长性,运用值分布和复域微分方程理论,得到上述方程的解的增长性的精确估计,推广并完善了文献[10]的结果. 相似文献
8.
研究了一类二阶齐次线性微分方程解的增长性,这里方程的系数为具有相同增长级的整函数.改进了Frei等的结果,并且得到了更精确的估计. 相似文献
9.
梁建军 《宝鸡文理学院学报(自然科学版)》2006,26(2):92-95,98
目的研究高阶微分方程f(k) Hk-1f(k-1) ... H0f=0及f(k) (Hk-1 gk-1)f(k-1) ... (H0 g0)f=0的解增长性,其中Hj=hjeajzn ...,hj0为整函数且σ(hj)<n,aj=djeiφ(dj>0),gj(j=0,...,k-1).方法应用R. Nevanlinna理论和反证法.结果得到上述2种齐次线性微分方程解的超级的精确估计.结论上述2种齐次线性微分方程将存在大量无穷级解,这类解的超级与方程的系数有密切联系. 相似文献
10.
一类高阶微分方程的复振荡 总被引:1,自引:0,他引:1
研究了微分方程 $ f^{(k)}+H_{k-1}(z)f^{(k-1)}+\cdots+H_0(z)f=F(z) $ 解的增长率,其中\\$H_j(z)=A_j(z)\mathrm{e}^{P_j(z)}(j=0,1,\cdots,k-1), A_j(z),F(z)$是整函数,$\sigma(A_j) 相似文献
11.
12.
王珺 《吉首大学学报(自然科学版)》2002,23(1):29-31
研究非齐次线性微分方程fk-eQ(z)f=1(k≥1)解的增长性,其中Q(z)是非常数多项式,得出上面方程的每个解有无穷级且超级为不超过deg Q的正整数,改进了已有的结果. 相似文献
13.
研究一类非齐次线性微分方程f(k)+ak-1f(k-1)+…+a1f'-(eQ(z)-h0)f=1(k≥1)解的增长性,其中aj(j=1,2,…,k-1)为常数,Q(z)为非常数多项式,h0为超越慢增长整函数.利用所得结果,还可以给出有关亚纯函数唯一性的结果. 相似文献
14.
研究了高阶微分方程f(k)+Hk-1f(k-1)+…+H1f′+H0f=0解的增长性,其中Hj(z)=hj(z)ePj(z)(j=0,1,…,k-1),Pj(z)为n次多项式,hj(z)为整函数,且σ(hj)相似文献
15.
研究了线性非齐次微分方程?″ A?′ B?=F的无穷级解的增长性。其中A,B为整函数,F为有限级整函数。当A(或B)比B(或A)有较大增长级时,对方程的无穷级解的超级进行了估计。 相似文献
16.
研究了一类非齐次微分方程f^(k)+ak-1f^(k-1)+…+a1f′-(e^Q(z)-a0)f=F(z)解的增长性和不动点,所得结果推广了杨连中、王珺等的有关定理。 相似文献
17.
主要研究了二阶微分方程f″+A1(z)eazf′+Σm j=1(Bj(z)ebjz)f=0解的增长性,运用值分布和复域微分方程理论,得到上述方程的解的增长性的精确估计,推广了文献[10]的结果。 相似文献
18.
金瑾 《中山大学学报(自然科学版)》2013,52(1):51-54
研究了高阶线性齐次微分方程
f (k)+Ak-1(z)Pk-1(e z)f ′ +…+A1(z)P1(ez)f ′ +A0(z)P0(ez)f=0
解的增长性,其中Aj(z)≠0(j=0,1,…,k-1)是整函数,Pj(ez)(j=0,1,…,k-1)是ez的非常数多项式,它们的常数项都为零,且次数不相等。证明了该微分方程的每一个非零解有无穷级。 相似文献
19.
研究了高阶线性微分方程f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z).ep0(z)f=0和f(k)+Ak-1(z)epk-1(z)f(k-1)+Ak-2(z)epk-2(z)f(k-2)+…+A0(z)ep0(z)f=F(z)解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bj,n,Aj(z)和F(z)是有限级整函数.针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计. 相似文献
20.
金瑾 《山西大同大学学报(自然科学版)》2011,(3):1-5
研究了高阶齐次线性微分方程f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)+D0(z))f=0解的增长性问题,其中pj(z)=ajzn+bj,1zn-1+…+bjn,,Aj(z),Dj(z)是有限级整函数。针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计。 相似文献