共查询到18条相似文献,搜索用时 78 毫秒
1.
为了检验胚胎干的全能性,通过用1日龄卵巢移植后,经体外受精得到的囊胚的饲养建立了小鼠的ES系,并在较高的代数下(第41代)制出了5只毛色嵌合体小鼠,但是没有得到性腺嵌合的小鼠。研究结果证实,高代数的ES细胞仍然具有构建嵌合体的能力。 相似文献
2.
小鼠胚胎干细胞建系新方法的初步研究 总被引:1,自引:0,他引:1
通过对小鼠胚胎着床初期子宫组织块的培养及内细胞团的分离,探讨利用该方法获得胚胎干细胞的可能性,我们用这种方法已建立了一株小鼠胚胎干细胞系,传至第10代,AKP染色细胞呈强阳性,RT—PCR证实Qct-4表达强阳性。结果表明,利用这种方法获得胚胎干细胞是可行的,与传统方法相比,这种新方法极大简化了实验步骤,降低了实验技术难度。 相似文献
3.
用免疫外科法从小鼠孤雌生殖胚胎分离胚胎干细胞,并研究了其在体内、体外的分化潜能.结果发现:从小鼠孤雌生殖的胚胎中可分离出胚胎干细胞(pES),可以传代培养25代,能表达很强的碱性磷酸酶,核型稳定呈40XX.培养至第18代的pES在体内可诱导肿瘤形成,并可分化为三个胚层的组织细胞.免疫组化结果显示:神经细胞特异性烯醇化酶(NSE)、肌肉特异性肌动蛋白?-actin均呈阳性,表明分离培养的pES在体内可至少分化为来自外胚层和中胚层的组织细胞.传至第20~24代的pES细胞,经体外定向诱导分化,可定向分化为节律性收缩的心肌细胞及神经细胞.免疫组化检测显示节律性收缩的心肌细胞表达?-actin,而神经细胞表达NSE.结果表明:利用免疫外科法可从孤雌生殖的小鼠胚胎建立pES,这些pES在体内、体外都具有分化为多种类型细胞的潜能. 相似文献
4.
昆明鼠胚胎干细胞的分离培养与鉴定 总被引:6,自引:0,他引:6
目的:从昆明系小鼠的早期胚胎分离和培养胚胎干细胞(ES细胞).方法:收集小鼠3.5d胚龄的囊胚,将其培养在小鼠胚胎成纤维细胞饲养层上,5—6d后取隆起生长的内细胞团块分离后再培养,观察集落的生长情况并通过碱性磷酸酶染色、原位杂交、细胞核型分析等对细胞集落进行鉴定.结果:KS细胞集落性生长,符合小鼠胚胎干细胞的一系列特性.结论:昆明系小鼠囊胚在胚胎成纤维细胞饲养层上可以发育成ES细胞,并能进行传代培养. 相似文献
5.
胚胎干细胞是从哺乳动物胚胎发育早期的囊胚的内细胞团内分离出来的一类细胞,具有自我更新和全能性的基本特征.作者利用M13噬菌体展示技术筛选与未分化的小鼠胚胎干细胞R1表面特异结合的多肽.实验利用未分化的小鼠胚胎干细胞为筛选靶细胞,分化的小鼠胚胎干细胞为吸附细胞,进行3轮的消减筛选,经细胞ELISA鉴定,噬菌体DNA测序和多肽序列分析,得到13条能与小鼠胚胎干细胞特异结合的多肽.通过BLASTP比对发现有11个体内的同源蛋白,为进一步研究小鼠胚胎干细胞表面分子提供研究基础. 相似文献
6.
7.
以BALB/c小鼠胚胎干细胞为对象,在大气下用原子力显微镜对其进行成象。由所获得的原子力显微图象可知,BALB/c小鼠胚胎干细胞呈圆形,表面结构致密,细胞大小不一,并且是中间高四周低的形状。 相似文献
8.
PrP^c在小鼠胚胎干细胞诱导分化形成的胚胎小体(EBs)中有所表达,其表达水平与丙戊酸(VPA)及其衍生物(VPA-A,VPA-B,VPA-C)的DCF值、ROS产量以及VPA-E的浓度成正比,VPA及其衍生物可以使PrP^c的表达上调,抗氧化剂维生素E(V-E)和VPA共同使用,可使VPA诱发的PrP^c表达减少,VPA及其衍生物处理的(EBs)的PrP^c表达水平与它们的胚胎毒性相一致,胚胎毒性越大,PrP^c表达越多,以上结果表明,PrP^c的表达与细胞的氧化还原状态相关,PrP^c很可能参与细胞的抗氧化防御过程。 相似文献
9.
目的 研究不同光照方法导致节律紊乱对生物体胚胎生长、发育和生殖功能的影响。方法 ( 1)雌小鼠以持续光照、持续黑暗、反相光照三种光照处理一周后 ,与雄小鼠合笼 ;( 2 )雌小鼠与雄小鼠合笼后 ,孕鼠以持续光照、持续黑暗、反相光照三种光照处理至 18日龄。观察整 18日龄孕鼠吸收胎、死胎情况 ,测量活胎身长、尾长 ,称胎重、胎盘重 ,并分离肝脏 ,称重计算肝脏相对重量比。结果 孕前和孕期反相光照组 ,胎重和着床数显著降低 ,吸收胎数显著增加 ;孕期反相光照组 ,死胎数显著增加。孕期持续光照组的吸收胎数显著增加。结论 异常光照周期可影响小鼠宫内胚胎的生长和发育 相似文献
10.
胚胎干细胞(embryonic stem cell,ES细胞)是来源于囊胚内细胞团的一种多能细胞,具有分化的多向性和长期增殖能力,已经广泛用于生命科学的许多领域,它在医学方面的应用也成为医学领域的研究热点。本文综述了胚胎干细胞在诱导分化为神经细胞、造血干细胞、内皮细胞等方面的研究进展及在临床应用前景。 相似文献
11.
12.
Yang Li ChangSheng Lin Li Wang Ying Liu XiaoNing Mu Yue Ma LingSong Li 《科学通报(英文版)》2009,54(22):4214-4220
Matrigel is routinely used as a coating material in the feeder-free culture system of human embryonic stem cells (hESCs). However, matrigel is costive and inconvenient to use. In this study, the possibility of using gelatin as an alternative coating material was investigated. The results showed that, after trypsinization, hESCs were maintained undifferentiated on gelatin. These hESCs expressed pluripotent markers, formed teratoma and maintained a normal karyotype. As measured at passage 10, the hESCs expressed a high level of Oct4 on both gelatin and Matrigeh hESCs growing on gelatin formed AP-positive colonies in similar size and number to those growing on Matrigel (P〉 0.05). Moreover, hESCs growing on gelatin contained a comparable percentage of SSEA-4-positive cells to those growing on Matrigel (95.1% vs.94.3%, P〉 0.05). H-1 hESCs were maintained undifferentiated on gelatin for 20 passages and remained the stable normal karyotype. This gelatin-based culture protocol may allow us to propagate hESCs in large scale, with less cost. 相似文献
13.
In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage. 相似文献
14.
In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright’s staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright’s staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage. 相似文献
15.
哺乳动物胚胎干细胞的特性及利用 总被引:2,自引:0,他引:2
哺乳动物胚胎干细胞(ES细胞)是由动物早期胚胎发育的内细胞团(ICM)或原始生殖细胞(PGC)分离得到的。人们利用ES细胞所具有的全能性、体外分化以及稳定的遗传性能等特点,展示了ES细胞在建立哺乳动物的早期胚胎体外分化模型、转基因动物模型、器官和组织的修复和移植治疗、克隆动物的生产、发育生物学的研究等方面广阔的应用前景。但是,由于哺乳动物错综复杂的基因调控和环境因素的影响,对于胚胎干细胞的研究还存在诸多问题,还需作更深入细致的研究。 相似文献
16.
Properties and applications of embryonic stem cells 总被引:1,自引:0,他引:1
Mouse embryonic stem (ES) cells are pluripotent cells derived from the early embryo and can be propagated stably in undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in the embryonic and adult body in vivo, and can be induced to differentiate into many cell types under appropriate culture conditions in vitro. Using these properties, people have set up various differentiated systems of many cell types and tissues in vitro. Through analysis of these systems, one can identify novel bioactive factors and reveal mechanisms of cell differentiation and organogenesis. ES cell-derived differentiated cells can also be applied to cell transplantation therapy. In addition, we summarized the features and potential applications of human ES cells. 相似文献
17.
胚胎干细胞(embryonic stem cells,ES)在体外分化培养条件下可以分化出各种组织细胞,其中包括心肌细胞。ES细胞在体外向心肌细胞分化与体内完整胚胎心肌发育过程相符合。该细胞在体外分化过程中顺序表达心肌细胞特有结构蛋白和离子通道,如肌球蛋白轻链和重链、特异性肌动蛋白、电压依赖性Ca^2 通道、K^ 通道等。ES细胞分化来源的心肌细胞具有体内心肌细胞的生理学特点,如产生的动作电位、表现自发性收缩等。因此,ES细胞是研究心肌细胞发育分化机制及鉴定其关键基因的理想模型。 相似文献
18.
Recently, the study on "induced pluripotent stem cells" (iPS cells) has made a great breakthrough, and it is considered as a new milestone in the history of life science. This progress has updated our traditional concepts about pluripotency control, and provided people with a brand-new strategy for somatic cell nuclear reprogramming. In virtue of its availability and stability, this method holds great potential in both biological and clinical research. In order to introduce this rising field of study, this paper starts with an overview of the development of iPS cell establishment, describes the key steps in generating iPS cells, elaborates several relevant scientific issues, and evaluates its current restrictions and promises in future research. 相似文献