首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

2.
本文的主要结果是: 设c_n终规为正。设sum from n=0 to ∞c_n=0。令f(x)=sum from n=0 to ∞c_nu_n(x),这里u_n(x)为勒襄特多项式P_n(x)(n=0,1,2,…)或者为切比晓夫多项式T_n(x)(n=0,1,2,…)。令I(ω)=integral from n=0 to 1 f(x)/(1-x)~ωdx,则按照ω=1或1<ω<2,I(ω)存在的充要条件是∑c_n logn收敛或∑c_nn~(2(ω-1))收敛。  相似文献   

3.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

4.
在本文中给出两种方法来求:当n→∞时, J_n(ω)=integral from n=-1 to 1 ρ(x)((u_n(1)-u_n(x))/(1-x)~ω)dx的渐近表达式,这里u_n(x)为n次多项式,ρ(x)为适当选取的函数在开区间(-1,1)中连续并取正值,ω为适当的正实数。第一种方法利用多项式u_n(x)具有特殊形式的循环公式。第二种方法是:当u_n(x)具有洛巨里格表达式且ω的取值在适当的区间中时,可以求出(?)_n(ω)=integral from n=-1 to1 ρ(x)((u_n(x))/(1-x)~ω)dx,于是利用解析延拓法,当ω的取值在更大的区间中时,可以求出J_n(ω)。利用第二种方法证明了下述定理: 设α≥-1/2且α≥β>-1。令f(x)=sum from n=0 to ∞c_nP_n~((α,β))(x),这里P_n~((α,β))(x)表示雅谷比多项式,如果c_n终规为正,且sum from n=0 to ∞c_nP_n~((α,β))(1)=0, 则按照λ=1或1<λ<2,integral from n=0 to 1 ((f(x)/(1-x)~λ))dx存在的充要条件分别是Σc_nn~αlogn收敛或Σc_nn~(α 2(λ-1))收敛。利用本定理即可推出:作者在函数项级数的积分一文中所证明的关于勒襄特级数及切比晓夫级数的两定理。  相似文献   

5.
本文的主要结果是证明了下述定理定理:设f(x)=sum from n=0 to ∞a_nJ_n(x)的收敛半径不小于1,其中a_n终规为正,即存在正整数N,当n≥N时,有a_n≥0。且sum from n=0 to ∞a_nJ_n′(1)=…=sum from n=0 to ∞a_nJ_n~(h-1)(1)=0 记δ_n=(a_n)/(2~nn!) 则当∞=k时,I(k)存在的充要条件是∑n~(h-1)δ_nlogn收敛。当k<ω相似文献   

6.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

7.
本文主要结果如下:利用无穷大量的阶和阶数以及新的广义数的概念和性质,建立了正项级数敛散性的下述判别法:广义数判别法对于正项级数公项f(n),若(i)f(x)不→0(x→ ∞),则级数sum from n=1 to ∞(f(n))发散;(ii)f(x)→0(x→ ∞)而1'.阶数O~m(1/(f(x)))≥1 sum from i=1 to(p-1)(α_i βα_p)(F_pβ~(x)的阶数)其中F_pβ~(x)=xlogx……(log…logx)~β(?);β>1,p 都可任意选定,或2'1/(f(x))的阶(次)高于或等于F_pβ~(x)的,则级数sum from n=1 to ∞(f(n))收敛;(iii)f(x)→0(x→ ∞),而1'阶数O~m(1/(f(x)))≤1 sum from i=1 to p α_i(F_p(x)的阶数)其中F_p(x)=xlogx…(log…logx)(?),p 可任意选定,或2'1/(f(x))的阶(次)低于或等于F_p(x)的, 则级数sum from n=1 to ∞(f(n))发散。此法应用很广,一般的判别方法,如柯西判别法,达朗贝尔、拉贝以及高斯判别法等,所能适用的本法都适用,它们所不适用的本法也能适用,而且方法总的说来比较单一,只须考虑阶数和阶(次)。  相似文献   

8.
设(X,Y)为d×1随机向量,f(x,y)为其概率密度函数,(X_i,Y_i) i=1,2,…,n为抽自f的i. i. d. 样本,m(x)(?)E(Y|X=x)称Y对X的回归函数。Watson (1964),Nagaraya (1964)提出用m_n(x)=sum from i=1 to n (Y_iK(?))/sum from i=1 to n (K((x-X_i)/h_n))估计m(x),其中K(x)为R~d上的概率密度,h_n>0,h_n→0(n→∞),这种估计称核估计。引入记号:ω(x)(?) integral from R~1 to ∞(yf(x,y)dy),g(x)(?) integral from R~1 to ∞(f(x,y)dy),又ω_n(x)(?)1/(nh_n~d) sum from i=1 to n (Y_iK)((x-X_i)/h_n),g_n(x)(?)1/(nh_n~d) sum from i=1 to n (K((x-X_i)/h_n)),它们分别是ω(x)和g(x)的估计。则m(x)=ω(x)/g(x),m_n(x)=ω_n(x)/g_n(x)(约定0/0=0)。当d=1时,E. Schuster和S. Yakowitz(1979)证明了在一组条件下,存在常数c>0,他对(?)ε>0,当n充分大时,其中,  相似文献   

9.
本文得到了Hardy算子Tf(x)=integral from n=0 to z(f(t)dt)从空间L~p(R+,vdx)到L~q(R+,Udx)有界的权函数对(u,v)的特征,其中1≤q相似文献   

10.
本文研究以Jacobi多项式的J_n(x)=sin(2n+1)/2θ/sinθ/2(x=cosθ,0≤θ≤π)的零点为基点的Hermite-Fejer插值过程H_(2n-1)(f,x).对于Lipα(0<α<1)类中函数,改进了[1]的结果:得到了H_(2n-1)(f,x)逼近有界变差函数的阶估计. 设函数f(x)∈C〔-1,1〕,x=cosθ(0≤θ≤π),J_n(x)是n阶Jacobi多项式,x_k=x_k~(n)=cosθk=cos(2kπ)/(2n+1)(k=1,2,…,n)是J_n(x)的零点,以{x_1,x_2,…,x_n}为基点的Hermite-Fejer插值算子是(见文〔1〕(4))  相似文献   

11.
对于БЕРНшТЕИН[1]提出的逼近连续周期函数的求和算子Un(f;x)=1/(2n+1) sum from k=0 to 2n f(x_k)〔sin2/2(x-x_k)/sin(x-x_k)/2 〕~2,HATAHCOH[2]证明了它的收敛性.至于误差估计,本文得到:1)若f∈C2π,则|Un(f;x)-f(x)|≤(5+3/2π)ω(f,lnn/n)(n≥3),2)若f∈C2π且f∈Lipiα(0<π<1),则|Un(f;x)-f(x)|≤〔7/4+3/(1-α)〕(2π/2n+1)~α,3)若f∈C2π且f∈Lipil,|Un(f;x)-f(x)|≤15·ln(2n+1)/2n+1。  相似文献   

12.
复的幂级数sum from n=0 to ∞(C_n(z-a)~n)在收敛圆k:|z-a|<R(0<R≤+∞)内的和函数f(z)具n=0有一些很好的性质,如:①,f(z)在k内解析;②,f(z)在k内具有任意阶导数,且可逐项求导至任意阶,即:f_(Z)~(m)=sum from n=m to ∞(n(n-1))……(n-m+1)·C_n(z-a)~(n-m),(z∈k,m∈N)等。但其和函数在收敛圆周|z-a|=R(0相似文献   

13.
本文考虑随机Direhlet级数f(s,ω)=sum from n=1 to ∞(1/n)b_nZ_n(ω)e~(-λns)(1)这里{λ_n}满足0≤λ_1<λ_2<…<λn<…<↑+∝(2)当(1)的收敛横坐标σ_c(ω)-0 a.s.和f(s,ω)是几乎必然零级的随机Dirchlet级数时,引进准确零(R)级,考虑了[1]的几乎必然增长性,如文中定理1和定理2.  相似文献   

14.
在数学分析中第二积分中值定理的基本形式是: 定理1 设f(x)在〔a,b〕(a〈b)上单调下降(即使广义的也可以),并且非负,则对〔a,b〕上的任意可积函数g(x),有integral from n=a to b (f(x)g(x)dx)=f(a) integral from n=a to b (g(x)dx) (1)其中ξ∈〔a,b〕。其证明可参见〔1〕、〔2〕、〔3〕。定理1仅告诉我们其中的ξ∈〔a,b〕,那么能否恰当地选取ξ,使之属于开的区间(a,b)呢?我们说,不一定!且看下面的例题。考虑〔0,(3/2)π〕上函数 f(x)=1与g(x)=cosx,显然它们满足定理1的条件,于是按照定理1,(1)式应该成立。然而  相似文献   

15.
§1、设函数ω(t)(0≤t≤π)是连续模,用H[ω]_L表示满足条件 ‖f(x+t)-f(x)‖_L=integral from n=-π to π(|f(x+t)-f(x)|dx≤ω(t))的有周期2π的周期可积函数f(x)所成的函数类。又用S_n(x、f)表示f(x)的富里埃级数的开头几项和,σ_(n,p)(x,f)表示瓦雷—布然平均:  相似文献   

16.
设三角级数α_0/2+sum from n=1 to ∞(a_ncos nx+b_nsin nx)的余弦系数a_n有相同符号,(全部a_n≥0,或全部a_n≤0)正弦系数b_n亦有相同符号,简称这种级数为同号系数级数。在[1]中我们证明了:设f~((k))(x)存在而且是连续的。当f(x)的富里埃级数是同号级数时,  相似文献   

17.
本文是研究整函数的增长性.应用无穷级整函数的对数级与对数型的定义,以及参考文献[2]中的一些结果,进一步得到了关于无穷级整函数对数级与对数型的一些重要性制裁.现将主要结果叙述于下:定理1:设整函数f(Z)=sum from n=0 to ∞ a_nZ~n的对数级为ρ1,则有ρ1=(?)定理2:设整函数f(Z)=sum from n=0 to∞(a_nZ~n)的对数级为ρ_1,并且0<ρ_1<+∞,其对数型为σ_1,则有定理3:设整函数f(z)=sum from n=0 to∞( a_nZ~n),存在,并且0<ρ<十∞,则当0<ν<+∞时,ρ必为f(Z)的对数级,进而ν为f(Z)的对数型.定理4:设f(Z)=sum from n=0 to∞(a_nZ~n)为无穷级整函数,则f(Z)与它的导函数f’(z)具有相同的对数级与对数型.  相似文献   

18.
设f(x)是以2π为周期的周期连续函数; f(x)~a_0/2+sum from n=1 to ∞(a_n cosnx+b_n sinnx)。(1)设S_n(x)是这个富里埃级数的部分和,E_n(f)是f(x)的阶不高于n的最佳逼近。在一般情形,  相似文献   

19.
设K是一个正整数。W~k(R~n)表示所有定义在R~n内的函数f(x)〔x=(x1,x2…,xn)〕使得它和它的S(|S|=sum from j=1 to n S_j≤K)阶广义导数都属于L~2(R~n)的函数的集合。对K=n=1,设H_0(R~1)={f(x);f和它的广义导数Df属于L~2(R~1),但f=f(a、e),这里f是绝对连续函数}。这篇文章的主要结果是:H_0(R~1)=W~1(R~1)。  相似文献   

20.
该文研究了具有一般权函数w(x)的积分integral from 0 to b w(x)f(x)dx,得出了普遍意义下的Gauss-Kronrod规则,给出并证明了相应代数精确度的两个结果。这些结果主要依赖于下列命题: (1)对一般权函数w(x),q,(z)=integral from 0 to b w(t)p_n(t)/(z-t)dt满足三项递推关系; (2)设E_n(z)为〔q,(z)〕~(-1)的主部,则q_n(z)E_n(z)∈span{1,q_(n+1)(Z),…,q_(2n+1)(Z)}; (3)integral from 0 to b w(z)p_n(z)z~k dz=0,0≤k≤n; (4)对特殊函数w(x)=1,E_n(z)之零点是〔a,b〕的单零点,且被p_n(x)的零点隔开。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号